For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Integration

Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Integration
Booklet	Question Paper

Time Allowed: 108 minutes

Score: /90

Percentage: /100

Grade Boundaries:

1 (a) Show that
$$\int_{0}^{2} \frac{x}{x^2 + 5} dx = \ln\left(\frac{3}{\sqrt{5}}\right)$$
. [4]

(b) Find
$$\int x\sqrt{x-2} \, \mathrm{d}x$$
. [4]

2 (i) Find
$$\int (3x^2 - 4x + 8) dx$$
. [3]

(ii) Hence find
$$\int_{1}^{3} (3x^2 - 4x + 8) dx$$
. [2]

3 (i) Given that
$$\frac{2x+11}{(2x+1)(x+3)} \equiv \frac{A}{2x+1} + \frac{B}{x+3}$$
, find the values of the constants A and B. [4]

(ii) Hence show that
$$\int_0^2 \frac{2x+11}{(2x+1)(x+3)} \, dx = \ln 15.$$
 [5]

4 (i) Use integration by parts to show that
$$\int \ln x \, dx = x \ln x - x + c$$
. [2]

(ii) Find

(a)
$$\int (\ln x)^2 \, \mathrm{d}x,$$
 [4]

(b)
$$\int \frac{\ln(\ln x)}{x} \, \mathrm{d}x.$$
 [5]

5 Find the exact value of
$$\int_0^1 (e^x - x) dx$$
. [4]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- 6 (i) (a) Find $\int \frac{e^x}{1 + e^x} dx$. [2]
 - **(b)** Hence evaluate $\int_0^{\ln 3} \frac{e^x}{1 + e^x} dx$, giving your answer in the form $\ln k$, where k is an integer.
 - (ii) (a) Using the substitution $u = 1 + e^x$, find $\int \left(\frac{e^x}{1 + e^x}\right)^2 dx$. [5]
 - (b) Hence find the exact volume of the solid of revolution generated when the curve given by $y = \frac{e^x}{1 + e^x}$, between $x = -\ln 3$ and $x = \ln 3$, is rotated through 2π radians about the *x*-axis.
- 7 A circle has equation $x^2 + y^2 = 16$. Find the volume generated when the region in the first quadrant which is bounded by the circle and the lines x = 1 and x = 2 is rotated through 2π radians about the x-axis. [5]
- 8 Use integration by parts to find $\int x \sin 3x \, dx$. [5]
- 9 (i) Using the substitution $u = x^2$, or otherwise, find the numerical value of

$$\int_0^{\sqrt{\ln 4}} x e^{-\frac{1}{2}x^2} dx.$$
 [4]

- (ii) Determine the exact coordinates of the stationary points of the curve $y = xe^{-\frac{1}{2}x^2}$. [4]
- 10 Using the substitution $u = 1 + \sqrt{x}$, or otherwise, find $\int \frac{1}{1 + \sqrt{x}} dx$ giving your answer in terms of x. [5]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

11 Find the exact value of

$$\int_{1}^{4} \left(10x^{\frac{3}{2}} - 3x^{\frac{1}{2}}\right) dx.$$
 [3]

12 (i) Show that

$$\int_{1}^{a} x^{n} \ln x \, dx = \frac{a^{n+1}}{(n+1)^{2}} ((n+1) \ln a - 1) + \frac{1}{(n+1)^{2}},$$

where $n \neq -1$ and a > 1. [6]

- (ii) (a) Determine the x-coordinate of the point of intersection of the curves $y = x^2 \ln x$ and $y = x \ln 2^x$, where x > 0.
 - (b) Find the exact value of the area of the region enclosed between these two curves, the line x = 1 and their point of intersection. Express your answer in the form $b + c \ln 2$, where b and c are rational. [4]
- (iii) The curve $y = (x^3 \ln x)^{0.5}$, for 1 < x < e, is rotated through 2π radians about the x-axis. Determine the value of the resulting volume of revolution, giving your answer correct to 4 significant figures.