Functions

Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Functions
Booklet	Question Paper

Time Allowed: 40 minutes

/33 Score:

Percentage: /100

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- 1 Let $f(x) = x^2$ and g(x) = 7x 2 for all real values of x.
 - (i) Give a reason why f has no inverse function. [1]
 - (ii) Write down an expression for gf(x). [2]
 - (iii) Find $g^{-1}(x)$. [2]
 - (iv) Explain the relationship between the graph of y = g(x) and $y = g^{-1}(x)$. [2]
- 2 Let $f(x) = x^2$ and g(x) = 7x 2 for all real values of x.
 - (i) Give a reason why f has no inverse function. [1]
 - (ii) Write down an expression for gf(x). [2]
 - (iii) Find $g^{-1}(x)$. [2]
- 3 The function f is defined by f: $t \mapsto 2 \sin t + \cos 2t$ for $0 \le t < 2\pi$.

(i) Show that
$$\frac{\mathrm{df}}{\mathrm{d}t} = 2\cos t(1 - 2\sin t)$$
. [2]

(ii) Determine the range of f. [5]

A curve *C* is given parametrically by $x = 2\cos t + \sin 2t$, y = f(t) for $0 \le t < 2\pi$.

- (iii) Show that $x^2 + y^2 = 5 + 4 \sin 3t$. [3]
- (iv) Deduce that C lies between two circles centred at the origin, and touches both. [2]
- (v) Find the gradient of the tangent to C at the point at which t = 0. [3]
- 4 Let $f(x) = x^2(x-2)$ and g(x) = 2x 1 for all real x.
 - (i) Sketch the graph of y = f(x) and explain briefly why the function f has no inverse. [2]
 - (ii) Write down $g^{-1}(x)$. [1]
 - (iii) On the same diagram, sketch the graphs of y = f(x 1) 3 and $y = g^{-1}(x)$ and state the number of real roots of the equation $f(x 1) 3 = g^{-1}(x)$. [3]