Centre Number	Candidate Number	Candidate Name

NAMIBIA SENIOR SECONDARY CERTIFICATE

PHYSICAL SCIENCE ORDINARY LEVEL

4323/2

PAPER 2 2 hours

Marks 100 **2019**

Additional Materials: Non-programmable calculator

Ruler

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- · Candidates answer on the Question Paper in the spaces provided.
- Write your Centre Number, Candidate Number and Name in the spaces provided on top of this page.
- Write in dark blue or black pen.
- · You may use a soft pencil for any diagrams, graphs or rough working.
- · Do not use correction fluid.
- Do not write in the margin For Examiner's Use.
- Answer all questions.
- The number of marks is given in brackets [] at the end of each question or part question.
- You will lose marks if you do not show your working or if you do not use appropriate units.
- Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall g = 10 m/s²).
- The Periodic Table is printed on page 20.

For Exa	aminer's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	
Marker	.

Marker	
Checker	

This document consists of **20** printed pages.

Republic of Namibia
MINISTRY OF EDUCATION, ARTS AND CULTURE

An aeroplane of mass 1.12 × 10⁵ kg accelerating constantly from rest along a runway.

(a) Calculate the weight of the aeroplane.

/ls\	WeightN	[1]
(D)	Name one of the forces acting on the aeroplane apart from the weight.	[1]
(c)	The aeroplane starts from rest and after 50 s, the aeroplane reaches a speed of 70 m/s.	[.]
	Calculate the	
	(i) acceleration of the aeroplane,	
	Accelerationm/s² (ii) horizontal resultant force on the aeroplane.	[2]
(d)	Resultant forceN State one form of energy that increases as the aeroplane gains height, while travelling at constant speed.	[2]
		[1]
		[7]

(b)	Sta	te the number of elect	trons in a chloride ion, (C <i>l</i> ⁻.	
(c)	-	_	h chlorine to form hydro	_	
	(i)	•	nd present in hydrogen	cilionae.	
	(ii)	Draw a structure of h	nydrogen chloride using	the Lewis notation.	
(d)	Soc	dium chloride and hyd	rogen chloride consist o	of different types of bonds.	
(d)	Soc (i)	Complete the table the chloride in water and	to show the difference	in the solubility of sodium	1
(d)		Complete the table the chloride in water and	to show the difference I in organic solvents. Ile and insoluble to ind	in the solubility of sodium	1
(d)		Complete the table to chloride in water and Use the terms solub	to show the difference I in organic solvents. Ile and insoluble to ind	in the solubility of sodium	1
(d)		Complete the table the chloride in water and	to show the difference I in organic solvents. Ie and insoluble to ind	in the solubility of sodium icate your answer.	1
(d)	(i)	Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in	to show the difference I in organic solvents. Ie and insoluble to ind solu	in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a	ı
(d)	(i)	Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in	to show the difference in organic solvents. Ile and insoluble to ind solution water	in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a	1
(d)	(i)	Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in	to show the difference in organic solvents. Ile and insoluble to ind solution water	in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a	1
(d)	(i)	Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in	to show the difference in organic solvents. Ile and insoluble to ind solution water	in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a	1
(d)	(i)	Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in	to show the difference in organic solvents. Ile and insoluble to ind solution water	in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a	1
(d)	(i)	Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in	to show the difference in organic solvents. Ile and insoluble to ind solution water	in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a	1
(d)	(i)	Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in	to show the difference in organic solvents. Ile and insoluble to ind solution water	in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a	1

3 Fig. 3.1 shows an electric iron which contains a thermostat. The thermostat uses a bimetallic strip.

Fig. 3.1

(a)	Wh	en current is passed through the heating element, it gets very hot.
	/i\	Name the main method of heat transfer from the heating element to

(1)	the base plate.	
		[1]
(ii)	With the help of a diagram, describe the structure of a bimetallic strip.	

 Explain how the bimetallic strip operates to control the temperature of the electric iron.	[2]

[2]

(b) The electric iron is connected to a 240 V supply and dispates 1400 W of power. Calculate the current flowing in the iron.

CurrentA	[2]

(c) Use Fig. 3.1 to identify the wiring **X**, **Y**, **Z** of the electric plug and their corresponding colours.

	X	colour	
	Υ	colour	
	Z	colour	[3]
(d)	State one safety device in the use	of the electric iron in Fig. 3.1.	
			[1]
			[11

Fig. 4.1 shows a setup of an experiment to investigate the effect of the size of 4 marble chips on the rate of reaction with dilute hydrochloric acid.

Fig. 4.1

The loss of mass was measured every one minute, and the results are sketched on a graph as shown in Fig. 4.2.

	Fig. 4.2	
(a)	The reaction of marble chips and dilute hydrochloric acid is exothermic.	
	Describe the meaning of exothermic.	
		[1]
(b)	The experiment was repeated with the same volume and same concentration of dilute hydrochloric acid and 20 g of powdered marble chips.	
	(i) On Fig. 4.2, sketch a line to show the results of this second experiment.	[2]
	(ii) Explain your answer in (b)(i) in terms of the collision theory.	
		[2]

(c)	Carbon dioxide gas is released in this reaction.	
	Describe the chemical test for CO ₂ .	
	Test	
	Result	
(d)	The equation for this reaction is given below.	[2]
	$CaCO_3$ (s) + 2HCl (aq) \rightarrow $CaCl_2$ (aq) + H_2O (l) + CO_2 (g)	
	Calculate the	
	(i) number of moles in 20 g of the marble chips (CaCO ₃). [Ca:40, C:12, C	D:16]
	Number of moles (ii) mass of calcium chloride, CaCl ₂ that was produced. [Ca:40, Cl:35.5]	[2]
	Mass = g	[2]
		[11]

5 Ted drops a stone in the water and observes wavefronts spread out from the stone as shown in Fig. 5.1.

	Fig. 5.1	
(a)	Define the term wavefront.	
		[1]
(b)	Ted observes two water waves pass a point in one second.	-
	Calculate the	
	(i) period of the waves,	
	Period =	[1]
	(ii) wavelength of the waves if they were travelling at 0.1 m/s.	

(c) Ted used the ripple tank to demonstrate wave properties of water. Fig. 5.2 shows one of these properties. boundary Fig. 5.2 (i) Name the property demonstrated in Fig. 5.2. [1] (ii) As the waves in Fig. 5.2 cross the boundary, the depth of the water changes. Indicate on Fig. 5.2, which side of the boundary is shallow and which side is deep. [1] (iii) When the wave crosses the boundary, its velocity changes. State **one** other property of the wave that changes. [1] (d) Fig. 5.3 shows the results of another experiment in the ripple tank. boundary Fig. 5.3 (i) Name the property demonstrated in Fig. 5.3. [1] (ii) The experiment is done with a gap of similar size to the wavelength of the waves and repeated with a much wider gap. Give the property of the patterns formed for each gap. Narrow gap..... Wide gap.....

[10]

[2]

6 Fig. 6.1 shows the stages used in the laboratory preparation of the salt, copper (II) sulfate, from copper (II) oxide and dilute sulfuric acid.

Fig. 6.1

a)	Define acid, in terms of proton transfer.	[1]
b)	Sulfuric acid is a strong acid.	ניו
	State the pH of a strong acid.	
		[1]
c)	Copper and oxygen reacts to form copper (II) oxide, CuO.	
	Suggest what type of oxide this is.	
		[1]
d)	Copper (II) sulfate is a soluble salt.	
	(i) State the name of the method used for preparing soluble salts from an aqueous solution.	
		[1]
	(ii) Explain the reason for filtering the copper (II) sulfate solution in stage 2.	
		[1]

(iii)	Describe how you would obtain pure crystals of copper (II) sulfate from its solution in stage 4 .		Exam U
		[2]	
		[7]	

For Examiner's Use **7** Fig. 7.1 shows a simple form of an alternating current (a.c.) generator.

Fig. 7.1

(a)	Define	the	term	electro	omotive	force	(e.m.f.)).
-----	--------	-----	------	---------	---------	-------	----------	----

(b) Identify the part labelled P.

[4]
 נין

(c) Sketch the voltage output graph for the induced e.m.f. showing **two** revolutions of the coil.

(d) State **one** way to increase the induced e.m.f.

......[1]

(e) Draw the circuit that could be connected to the output terminal to produce a direct current.

[1]

(f)	Tra	nsformers are essential in the transmission of electricity.	
	(i)	An alternating current in the primary coil of a transformer causes an e.m.f. in the secondary coil.	
		Name the process which causes this.	
			[1]
	(ii)	A transformer with an input voltage of 18 V has 4 800 turns in the secondary coil and an output voltage of 240 V.	
		Calculate the number of turns in the primary coil. Write down the formula that you use.	
		Number of turns	[3]
]	10]

Fig. 8.1 shows a blast furnace, where iron is extracted from its ore. 8

> iron ore coke, substance C

Fig. 8.1

The reaction equation is shown below.

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

(a) Name substance C.

[1]

(b) Carbon monoxide is formed from coke in two stages.

In stage 1, coke reacts (burns) in hot air to produce carbon dioxide.

(i) Describe stage 2 of this reaction.

[1]

(ii) Suggest the function of carbon monoxide in the extraction of iron from iron (III) oxide.

[1]

(c) In another reaction, an iron nail is placed in blue copper (II) sulfate solution as shown in Fig. 8.2.

[1]
[1]
sts that
[1]
[1]
[7]

9 Fig. 9.1 shows a flow chart of the production of limewater from limestone. Limestone is a form of calcium carbonate.

(a)	Fig. 9.1 Give the chemical name of slaked lime.	
		[1]
(b)	Complete the chemical equation to show the production of lime from limestone.	
	$CaCO_3(s) \rightarrow \dots + \dots$	[2]
(c)	Give one use of limestone.	
		[1]
(d)	Calcium compounds such as limestone in rocks cause hardness in water.	
	(i) State one compound that causes permanent hardness in water.	
		[1]
	(ii) Name one method of softening permanent hard water.	
		[1]
		[6]

10 Fig.10.1 shows reactions of an unsaturated hydrocarbon A, which is the first in the homologous series of alkenes.

	Fig. 10.1	
(a)	Describe the meaning of the phrase homologous series.	
		[4 ¹
		L'
(b)	Deduce substances A , B , C and D .	
	A	
	В	
	C	
	D	[4]
(c)	Draw the structure of ethanol.	

(d)	Give one use of ethanol.	[2]
		[1]

[8]

. ,	vas observed that the detecto en though there is no source	or shows a count rate of 15 counts per minu present.
Ex	plain why there is a count un	der these conditions.
ob	·	detector near to the radioactive source ar etector when different absorbers are place tector.
Th	e readings are shown in Tabl	le 11.1.
		Table 11.1
	absorber	reading / counts per minute
	none sheet of paper 2 mm of aluminium 4 cm of lead	3 329 1 305 1 309 31
(i)	7 .	ion, alpha, beta and gamma. ne which of these radiations were present
.,	Use Table 11.1 to determin the radioactive source.	•
(ii)	Use Table 11.1 to determine the radioactive source. State the number of proton particle.	ne which of these radiations were present
(ii)	Use Table 11.1 to determine the radioactive source. State the number of proton particle.	s and neutrons found in an alpha
(ii) (iii	Use Table 11.1 to determine the radioactive source. State the number of proton particle. Gamma rays pass between Describe what is observed.	s and neutrons found in an alpha
(ii) (iii	Use Table 11.1 to determine the radioactive source. State the number of proton particle. Gamma rays pass between Describe what is observed.	s and neutrons found in an alpha two electrically charged plates.
(ii) (iii	Use Table 11.1 to determine the radioactive source. State the number of proton particle. Gamma rays pass between Describe what is observed.	s and neutrons found in an alpha two electrically charged plates.

12 Table 12.1 shows sources of five pollutants, over a specified period of time.

Table 12.1

pollutant	source of pollution and mass of pollution produced / tonnes					
	cars	cars power stations burning ru		other sources		
sulfur dioxide	5	20	4	8		
carbon monoxide	52	3	6	2		
nitrogen dioxide	6	8	0.5	1		
smoke	3	10	2	6		
lead compounds	4	0	0	0		

smoke		3	10	2	6		
lead c	compounds	4	0	0	0		
-	se Table 12.1 ollutants.	I to determ	ine which source	produced the grea			
` '	ırning fossil fı	uels. This p	is not listed in Tab pollutant causes glo	•	ed mostly by		
(ii)			obal warming.		[
	arbon monox	ide pollutio	n is a major proble noxide is formed.		[
					[
•	om the inforne power station		able 12.1, the majo	r source of sulfur o	dioxide is		
(i)	Suggest a dioxide bei				r.		
(ii)	(ii) Sulfur dioxide causes acid rain. Name one other pollutant in the table that causes acid rain.						
e) An	ccording to Ta	 able 12 1 <i>c</i>	only cars emit lead	compounds	[
-	_		sion of lead compo	-			
(ii)	The catalytic converter in the car exhaust converts harmful gases into less harmless ones. Name two gases that are released as products in the converter.						
	1						
	2				[2		
					- [9		

DATA SHEET The Periodic Table of the Elements Group		0	4 He Heium 2	20 Ne Neon	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103														
	-	IIΛ		19 F Fluorine	35,5 C/ Chlorine	80 Br Bromine 35	127 J Iodine 53	At Astatine 85		773 Yb Ytterbium 70	Nobelium														
		IA											16 0 Oxygen 8	32 S Sulfur 16	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101					
		>																14 Nitrogen 7	31 P Phosphorus 15	75 As Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
		۸۱															12 C Carbon 6	28 Si Silicon	73 Ge Germanium	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	Es Einsteinium 99	
		=					11 B Boron 5	27 AJ Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T T Thallium		162 Dy Dysprosium 66	Californium 98											
						65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	Bk Berkelium 97														
						64 Copper 29	108 Ag Silver 47	197 Au Gold 79		157 Gd Gadolinium 64	Cm Curium 96														
	Group					59 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95														
DATA e Periodic Tal	9	G 1 Hydrogen 1			59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77		150 Sm Samarium 62	Pu Plutonium 94															
 			1 H Hydrogen	1 H Hydrogen 1	1 H Hydrogen 1			56 Fe Iron 26	101 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Np Neptunium 93												
						55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium 92														
						52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91														
						51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium 90														
						48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72		1	nass rumber														
						45 Sc Scandium 21	89 Y	139 La Lanthanum 57 *	227 Ac Actinium 89 †	s s	a = relative atomic mass X = atomic symbol b = proton (atomic) numbo														
		=		9 Be Beryllium 4	24 Mg Magnesium 12	40 Ca Calcium	88 Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58 - 71 Lanthanoid series †90 - 103 Actinoid series	т Х														
		_		7 Li Lithium 3	23 Na Sodium	39 K Potassium	85 Rb Rubidium 37	133 Csesium 55	Fr Francium 87	*58 - 71 Lê †90 - 103 A	Кеу														

The volume of one mole of any gas is 24 \mbox{dm}^3 at room temperature and pressure (r.t.p.).