| Centre Number | Candidate Number | Candidate Name | |---------------|------------------|----------------| | | | | | | | | ## NAMIBIA SENIOR SECONDARY CERTIFICATE ## PHYSICAL SCIENCE ORDINARY LEVEL 4323/2 PAPER 2 2 hours Marks 100 **2019** Additional Materials: Non-programmable calculator Ruler ## INSTRUCTIONS AND INFORMATION TO CANDIDATES - · Candidates answer on the Question Paper in the spaces provided. - Write your Centre Number, Candidate Number and Name in the spaces provided on top of this page. - Write in dark blue or black pen. - · You may use a soft pencil for any diagrams, graphs or rough working. - · Do not use correction fluid. - Do not write in the margin For Examiner's Use. - Answer all questions. - The number of marks is given in brackets [] at the end of each question or part question. - You will lose marks if you do not show your working or if you do not use appropriate units. - Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall g = 10 m/s²). - The Periodic Table is printed on page 20. | For Exa | aminer's Use | |---------|--------------| | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | 9 | | | 10 | | | 11 | | | 12 | | | Total | | | Marker | . | | Marker | | |---------|--| | Checker | | This document consists of **20** printed pages. Republic of Namibia MINISTRY OF EDUCATION, ARTS AND CULTURE An aeroplane of mass 1.12 × 10⁵ kg accelerating constantly from rest along a runway. (a) Calculate the weight of the aeroplane. | /ls\ | WeightN | [1] | |------|---|-----| | (D) | Name one of the forces acting on the aeroplane apart from the weight. | [1] | | (c) | The aeroplane starts from rest and after 50 s, the aeroplane reaches a speed of 70 m/s. | [.] | | | Calculate the | | | | (i) acceleration of the aeroplane, | | | | Accelerationm/s² (ii) horizontal resultant force on the aeroplane. | [2] | | (d) | Resultant forceN State one form of energy that increases as the aeroplane gains height, while travelling at constant speed. | [2] | | | | [1] | | | | [7] | | (b) | Sta | te the number of elect | trons in a chloride ion, (| C <i>l</i> ⁻. | | |-----|------------|--|---|--|---| | (c) | - | _ | h chlorine to form hydro | _ | | | | (i) | • | nd present in hydrogen | cilionae. | | | | (ii) | Draw a structure of h | nydrogen chloride using | the Lewis notation. | (d) | Soc | dium chloride and hyd | rogen chloride consist o | of different types of bonds. | | | (d) | Soc
(i) | Complete the table the chloride in water and | to show the difference | in the solubility of sodium | 1 | | (d) | | Complete the table the chloride in water and | to show the difference I in organic solvents. Ile and insoluble to ind | in the solubility of sodium | 1 | | (d) | | Complete the table to chloride in water and Use the terms solub | to show the difference I in organic solvents. Ile and insoluble to ind | in the solubility of sodium | 1 | | (d) | | Complete the table the chloride in water and | to show the difference
I in organic solvents.
Ie and insoluble to ind | in the solubility of sodium icate your answer. | 1 | | (d) | (i) | Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in | to show the difference
I in organic solvents.
Ie and insoluble to ind
solu | in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a | ı | | (d) | (i) | Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in | to show the difference in organic solvents. Ile and insoluble to ind solution water | in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a | 1 | | (d) | (i) | Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in | to show the difference in organic solvents. Ile and insoluble to ind solution water | in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a | 1 | | (d) | (i) | Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in | to show the difference in organic solvents. Ile and insoluble to ind solution water | in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a | 1 | | (d) | (i) | Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in | to show the difference in organic solvents. Ile and insoluble to ind solution water | in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a | 1 | | (d) | (i) | Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in | to show the difference in organic solvents. Ile and insoluble to ind solution water | in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a | 1 | | (d) | (i) | Complete the table to chloride in water and Use the terms solub sodium chloride Explain in terms of in | to show the difference in organic solvents. Ile and insoluble to ind solution water | in the solubility of sodium icate your answer. ubility organic solvents ny sodium chloride has a | 1 | **3** Fig. 3.1 shows an electric iron which contains a thermostat. The thermostat uses a bimetallic strip. Fig. 3.1 | (a) | Wh | en current is passed through the heating element, it gets very hot. | |-----|-----|---| | | /i\ | Name the main method of heat transfer from the heating element to | | (1) | the base plate. | | |------|---|-----| | | | [1] | | (ii) | With the help of a diagram, describe the structure of a bimetallic strip. | | | | | | | | | | |
Explain how the bimetallic strip operates to control the temperature of the electric iron. | [2] | |--|-----| [2] **(b)** The electric iron is connected to a 240 V supply and dispates 1400 W of power. Calculate the current flowing in the iron. | CurrentA | [2] | |----------|-----| | | | (c) Use Fig. 3.1 to identify the wiring **X**, **Y**, **Z** of the electric plug and their corresponding colours. | | X | colour | | |-----|---|-----------------------------------|-----| | | Υ | colour | | | | Z | colour | [3] | | (d) | State one safety device in the use | of the electric iron in Fig. 3.1. | | | | | | [1] | | | | | [11 | Fig. 4.1 shows a setup of an experiment to investigate the effect of the size of 4 marble chips on the rate of reaction with dilute hydrochloric acid. Fig. 4.1 The loss of mass was measured every one minute, and the results are sketched on a graph as shown in Fig. 4.2. | | Fig. 4.2 | | |-----|--|-----| | (a) | The reaction of marble chips and dilute hydrochloric acid is exothermic. | | | | Describe the meaning of exothermic. | | | | | | | | | [1] | | (b) | The experiment was repeated with the same volume and same concentration of dilute hydrochloric acid and 20 g of powdered marble chips. | | | | (i) On Fig. 4.2, sketch a line to show the results of this second experiment. | [2] | | | (ii) Explain your answer in (b)(i) in terms of the collision theory. | | | | | | | | | | | | | | | | | [2] | | (c) | Carbon dioxide gas is released in this reaction. | | |-----|---|-------| | | Describe the chemical test for CO ₂ . | | | | Test | | | | | | | | Result | | | (d) | The equation for this reaction is given below. | [2] | | | $CaCO_3$ (s) + 2HCl (aq) \rightarrow $CaCl_2$ (aq) + H_2O (l) + CO_2 (g) | | | | Calculate the | | | | (i) number of moles in 20 g of the marble chips (CaCO ₃). [Ca:40, C:12, C | D:16] | | | Number of moles (ii) mass of calcium chloride, CaCl ₂ that was produced. [Ca:40, Cl:35.5] | [2] | | | Mass = g | [2] | | | | [11] | **5** Ted drops a stone in the water and observes wavefronts spread out from the stone as shown in Fig. 5.1. | | Fig. 5.1 | | |-----|--|-----| | (a) | Define the term wavefront. | | | | | | | | | [1] | | (b) | Ted observes two water waves pass a point in one second. | - | | | Calculate the | | | | (i) period of the waves, | | | | | | | | | | | | | | | | Period = | [1] | | | (ii) wavelength of the waves if they were travelling at 0.1 m/s. | | | | | | | | | | (c) Ted used the ripple tank to demonstrate wave properties of water. Fig. 5.2 shows one of these properties. boundary Fig. 5.2 (i) Name the property demonstrated in Fig. 5.2. [1] (ii) As the waves in Fig. 5.2 cross the boundary, the depth of the water changes. Indicate on Fig. 5.2, which side of the boundary is shallow and which side is deep. [1] (iii) When the wave crosses the boundary, its velocity changes. State **one** other property of the wave that changes. [1] (d) Fig. 5.3 shows the results of another experiment in the ripple tank. boundary Fig. 5.3 (i) Name the property demonstrated in Fig. 5.3. [1] (ii) The experiment is done with a gap of similar size to the wavelength of the waves and repeated with a much wider gap. Give the property of the patterns formed for each gap. Narrow gap..... Wide gap..... [10] [2] **6** Fig. 6.1 shows the stages used in the laboratory preparation of the salt, copper (II) sulfate, from copper (II) oxide and dilute sulfuric acid. Fig. 6.1 | a) | Define acid, in terms of proton transfer. | [1] | |------------|---|-----| | b) | Sulfuric acid is a strong acid. | ניו | | | State the pH of a strong acid. | | | | | [1] | | c) | Copper and oxygen reacts to form copper (II) oxide, CuO. | | | | Suggest what type of oxide this is. | | | | | [1] | | d) | Copper (II) sulfate is a soluble salt. | | | | (i) State the name of the method used for preparing soluble salts from an aqueous solution. | | | | | [1] | | | (ii) Explain the reason for filtering the copper (II) sulfate solution in stage 2. | | | | | [1] | | (iii) | Describe how you would obtain pure crystals of copper (II) sulfate from its solution in stage 4 . | | Exam
U | |-------|--|-----|-----------| | | | | | | | | | | | | | | | | | | [2] | | | | | [7] | | For Examiner's Use **7** Fig. 7.1 shows a simple form of an alternating current (a.c.) generator. Fig. 7.1 | (a) | Define | the | term | electro | omotive | force | (e.m.f.) |). | |-----|--------|-----|------|---------|---------|-------|----------|----| |-----|--------|-----|------|---------|---------|-------|----------|----| |
 |
 | | |------|------|--| | | | | | | | | (b) Identify the part labelled P. | [4] | |---------| |
נין | (c) Sketch the voltage output graph for the induced e.m.f. showing **two** revolutions of the coil. (d) State **one** way to increase the induced e.m.f.[1] (e) Draw the circuit that could be connected to the output terminal to produce a direct current. [1] | (f) | Tra | nsformers are essential in the transmission of electricity. | | |-----|------|---|-----| | | (i) | An alternating current in the primary coil of a transformer causes an e.m.f. in the secondary coil. | | | | | Name the process which causes this. | | | | | | [1] | | | (ii) | A transformer with an input voltage of 18 V has 4 800 turns in the secondary coil and an output voltage of 240 V. | | | | | Calculate the number of turns in the primary coil. Write down the formula that you use. | Number of turns | [3] | | | |] | 10] | Fig. 8.1 shows a blast furnace, where iron is extracted from its ore. 8 > iron ore coke, substance C Fig. 8.1 The reaction equation is shown below. $$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$ (a) Name substance C. [1] (b) Carbon monoxide is formed from coke in two stages. In stage 1, coke reacts (burns) in hot air to produce carbon dioxide. (i) Describe stage 2 of this reaction. [1] (ii) Suggest the function of carbon monoxide in the extraction of iron from iron (III) oxide. [1] (c) In another reaction, an iron nail is placed in blue copper (II) sulfate solution as shown in Fig. 8.2. | [1] | |----------| | | | | | [1] | | sts that | | [1] | | | | | | | | [1] | | [7] | | | **9** Fig. 9.1 shows a flow chart of the production of limewater from limestone. Limestone is a form of calcium carbonate. | (a) | Fig. 9.1 Give the chemical name of slaked lime. | | |-----|---|-----| | | | [1] | | (b) | Complete the chemical equation to show the production of lime from limestone. | | | | $CaCO_3(s) \rightarrow \dots + \dots$ | [2] | | (c) | Give one use of limestone. | | | | | [1] | | (d) | Calcium compounds such as limestone in rocks cause hardness in water. | | | | (i) State one compound that causes permanent hardness in water. | | | | | [1] | | | (ii) Name one method of softening permanent hard water. | | | | | [1] | | | | [6] | 10 Fig.10.1 shows reactions of an unsaturated hydrocarbon A, which is the first in the homologous series of alkenes. | | Fig. 10.1 | | |-----|---|-----------------| | (a) | Describe the meaning of the phrase homologous series. | | | | | [4 ¹ | | | | L' | | (b) | Deduce substances A , B , C and D . | | | | A | | | | В | | | | C | | | | D | [4] | | (c) | Draw the structure of ethanol. | | | (d) | Give one use of ethanol. | [2] | |-----|---------------------------------|-----| | | | [1] | [8] | . , | vas observed that the detecto
en though there is no source | or shows a count rate of 15 counts per minu present. | |--------------|---|---| | Ex | plain why there is a count un | der these conditions. | | ob | · | detector near to the radioactive source ar etector when different absorbers are place tector. | | Th | e readings are shown in Tabl | le 11.1. | | | | Table 11.1 | | | absorber | reading / counts per minute | | | none sheet of paper 2 mm of aluminium 4 cm of lead | 3 329
1 305
1 309
31 | | | | | | (i) | 7 . | ion, alpha, beta and gamma. ne which of these radiations were present | | ., | Use Table 11.1 to determin the radioactive source. | • | | (ii) | Use Table 11.1 to determine the radioactive source. State the number of proton particle. | ne which of these radiations were present | | (ii) | Use Table 11.1 to determine the radioactive source. State the number of proton particle. | s and neutrons found in an alpha | | (ii)
(iii | Use Table 11.1 to determine the radioactive source. State the number of proton particle. Gamma rays pass between Describe what is observed. | s and neutrons found in an alpha | | (ii)
(iii | Use Table 11.1 to determine the radioactive source. State the number of proton particle. Gamma rays pass between Describe what is observed. | s and neutrons found in an alpha two electrically charged plates. | | (ii)
(iii | Use Table 11.1 to determine the radioactive source. State the number of proton particle. Gamma rays pass between Describe what is observed. | s and neutrons found in an alpha two electrically charged plates. | **12** Table 12.1 shows sources of five pollutants, over a specified period of time. ## **Table 12.1** | pollutant | source of pollution and mass of pollution produced / tonnes | | | | | | |------------------|---|--------------------------------|-----|---------------|--|--| | | cars | cars power stations burning ru | | other sources | | | | sulfur dioxide | 5 | 20 | 4 | 8 | | | | carbon monoxide | 52 | 3 | 6 | 2 | | | | nitrogen dioxide | 6 | 8 | 0.5 | 1 | | | | smoke | 3 | 10 | 2 | 6 | | | | lead compounds | 4 | 0 | 0 | 0 | | | | smoke | | 3 | 10 | 2 | 6 | | | |--------------|---|------------------------|--|----------------------|--------------|--|--| | lead c | compounds | 4 | 0 | 0 | 0 | | | | - | se Table 12.1
ollutants. | I to determ | ine which source | produced the grea | | | | | ` ' | ırning fossil fı | uels. This p | is not listed in Tab
pollutant causes glo | • | ed mostly by | | | | (ii) | | | obal warming. | | [| | | | | arbon monox | ide pollutio | n is a major proble
noxide is formed. | | [| | | | | | | | | [| | | | • | om the inforne power station | | able 12.1, the majo | r source of sulfur o | dioxide is | | | | (i) | Suggest a dioxide bei | | | | r. | | | | (ii) | (ii) Sulfur dioxide causes acid rain. Name one other pollutant in the table that causes acid rain. | | | | | | | | e) An | ccording to Ta |
able 12 1 <i>c</i> | only cars emit lead | compounds | [| | | | - | _ | | sion of lead compo | - | | | | | (ii) | The catalytic converter in the car exhaust converts harmful gases into less harmless ones. Name two gases that are released as products in the converter. | | | | | | | | | 1 | | | | | | | | | 2 | | | | [2 | | | | | | | | | -
[9 | | | | DATA SHEET The Periodic Table of the Elements Group | | 0 | 4 He Heium 2 | 20
Ne
Neon | 40
Ar
Argon | 84
Kr
Krypton
36 | 131
Xe
Xenon
54 | Rn
Radon
86 | | 175
Lu
Lutetium
71 | Lr
Lawrencium
103 | | | | | | | | | | | | | | | |---|-------|----------------|---------------------------|----------------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|--------------------------------------|---|--|-------------------------------|--------------------------------------|--------------------------------|-----------------------------------|-------------------------------------|-------------------------------|----------------------------|------------------------------------|----------------------------------|------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------| | | - | IIΛ | | 19 F
Fluorine | 35,5 C/ Chlorine | 80
Br
Bromine
35 | 127
J
Iodine
53 | At
Astatine
85 | | 773 Yb Ytterbium 70 | Nobelium | | | | | | | | | | | | | | | | | | IA | | | | | | | | | | | 16
0
Oxygen
8 | 32
S
Sulfur
16 | 79
Se
Selenium
34 | 128
Te
Tellurium
52 | Po
Polonium
84 | | 169
Tm
Thulium
69 | Md
Mendelevium
101 | | | | | | | | | > | | | | | | | | | | | | | | | | 14 Nitrogen 7 | 31
P
Phosphorus
15 | 75
As
Arsenic
33 | 122
Sb
Antimony
51 | 209
Bi
Bismuth
83 | | 167
Er
Erbium
68 | Fm
Fermium
100 | | | | ۸۱ | | | | | | | | | | | | | | | 12
C
Carbon
6 | 28
Si
Silicon | 73 Ge Germanium | 119
Sn
Tin | 207
Pb
Lead
82 | | 165
Ho
Holmium
67 | Es
Einsteinium
99 | | | | | = | | | | | 11
B
Boron
5 | 27
AJ
Aluminium
13 | 70
Ga
Gallium
31 | 115
In
Indium
49 | 204 T T Thallium | | 162
Dy
Dysprosium
66 | Californium
98 | | | | | | | | | | | | | | | | | | | 65 Zn Zinc 30 | 112
Cd
Cadmium
48 | 201
Hg
Mercury
80 | | 159
Tb
Terbium
65 | Bk
Berkelium
97 | 64
Copper
29 | 108
Ag
Silver
47 | 197
Au
Gold
79 | | 157
Gd
Gadolinium
64 | Cm
Curium
96 | | | | | | | | | | | | | | | | | Group | | | | | 59
Ni
Nickel
28 | 106
Pd
Palladium
46 | 195
Pt
Platinum
78 | | 152
Eu
Europium
63 | Am
Americium
95 | | | | | | | | | | | | | | | | DATA
e Periodic Tal | 9 | G 1 Hydrogen 1 | | | 59
Co
Cobalt
27 | 103
Rh
Rhodium
45 | 192
Ir
Iridium
77 | | 150
Sm
Samarium
62 | Pu
Plutonium
94 | | | | | | | | | | | | | | | | |

 | | | 1
H
Hydrogen | 1
H
Hydrogen
1 | 1
H
Hydrogen
1 | | | 56
Fe
Iron
26 | 101
Ru
Ruthenium
44 | 190
Os
Osmium
76 | | Pm
Promethium
61 | Np
Neptunium
93 | 55
Mn
Manganese
25 | Tc
Technetium
43 | 186
Re
Rhenium
75 | | 144
Nd
Neodymium
60 | 238
U
Uranium
92 | 52
Cr
Chromium
24 | 96
Mo
Molybdenum
42 | 184
W
Tungsten
74 | | 141
Pr
Praseodymium
59 | Pa
Protactinium
91 | 51
V
Vanadium
23 | 93
Nb
Niobium
41 | 181
Ta
Tantalum
73 | | 140
Ce
Cerium
58 | 232
Th
Thorium
90 | 48
Ti
Titanium
22 | 91
Zr
Zirconium
40 | 178
Hf
Hafnium
72 | | 1 | nass
rumber | 45
Sc
Scandium
21 | 89 Y | 139 La Lanthanum 57 * | 227
Ac
Actinium
89 † | s s | a = relative atomic mass X = atomic symbol b = proton (atomic) numbo | | | | | | | | | | | | | | | | | | = | | 9
Be
Beryllium
4 | 24
Mg
Magnesium
12 | 40 Ca Calcium | 88
Sr
Strontium | 137
Ba
Barium
56 | 226
Ra
Radium
88 | *58 - 71 Lanthanoid series
†90 - 103 Actinoid series | т Х | | | | | | | | | | | | | | | | | | _ | | 7
Li
Lithium
3 | 23 Na Sodium | 39 K Potassium | 85
Rb
Rubidium
37 | 133
Csesium
55 | Fr
Francium
87 | *58 - 71 Lê
†90 - 103 A | Кеу | | | | | | | | | | | | | | | The volume of one mole of any gas is 24 \mbox{dm}^3 at room temperature and pressure (r.t.p.).