Chapter 3 Trigonometry

May/June 2002

1 Prove the identity

$$\cot \theta - \tan \theta \equiv 2 \cot 2\theta.$$
 [3]

Oct/Nov 2002

5 (i) Express $4 \sin \theta - 3 \cos \theta$ in the form $R \sin(\theta - \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, stating the value of α correct to 2 decimal places. [3]

Hence

(ii) solve the equation

$$4\sin\theta - 3\cos\theta = 2$$
,

giving all values of
$$\theta$$
 such that $0^{\circ} < \theta < 360^{\circ}$, [4]

(iii) write down the greatest value of
$$\frac{1}{4\sin\theta - 3\cos\theta + 6}$$
. [1]

May/June 2003

1 (i) Show that the equation

$$\sin(x - 60^{\circ}) - \cos(30^{\circ} - x) = 1$$

can be written in the form $\cos x = k$, where k is a constant.

- (ii) Hence solve the equation, for $0^{\circ} < x < 180^{\circ}$. [2]
- 10 (i) Prove the identity

$$\cot x - \cot 2x \equiv \csc 2x.$$
 [3]

(ii) Show that
$$\int_{\frac{1}{6}\pi}^{\frac{1}{4}\pi} \cot x \, dx = \frac{1}{2} \ln 2.$$
 [3]

(iii) Find the exact value of
$$\int_{\frac{1}{6}\pi}^{\frac{1}{4}\pi} \csc 2x \, dx$$
, giving your answer in the form $a \ln b$. [4]

Oct/Nov 2003

3 Solve the equation

$$\cos\theta + 3\cos 2\theta = 2,$$

giving all solutions in the interval
$$0^{\circ} \le \theta \le 180^{\circ}$$
.

[5]

[2]

May/June 2004

1 Sketch the graph of
$$y = \sec x$$
, for $0 \le x \le 2\pi$. [3]

5 (i) Prove the identity

$$\sin^2\theta\cos^2\theta = \frac{1}{8}(1-\cos 4\theta).$$
 [3]

(ii) Hence find the exact value of

$$\int_0^{\frac{1}{3}\pi} \sin^2 \theta \cos^2 \theta \, d\theta. \tag{3}$$

Oct/Nov 2004

4 (i) Show that the equation

$$\tan(45^{\circ} + x) = 2\tan(45^{\circ} - x)$$

can be written in the form

$$\tan^2 x - 6\tan x + 1 = 0. ag{4}$$

(ii) Hence solve the equation $\tan(45^\circ + x) = 2\tan(45^\circ - x)$, for $0^\circ < x < 90^\circ$. [3]

May/June 2005

6 (i) Prove the identity

$$\cos 4\theta + 4\cos 2\theta = 8\cos^4 \theta - 3.$$
 [4]

(ii) Hence solve the equation

$$\cos 4\theta + 4\cos 2\theta = 2$$
,

for
$$0^{\circ} \leqslant \theta \leqslant 360^{\circ}$$
. [4]

Oct/Nov 2005

5 By expressing $8 \sin \theta - 6 \cos \theta$ in the form $R \sin(\theta - \alpha)$, solve the equation

$$8\sin\theta - 6\cos\theta = 7$$
,

for
$$0^{\circ} \leqslant \theta \leqslant 360^{\circ}$$
. [7]

May/June 2006

- 4 (i) Express $7 \cos \theta + 24 \sin \theta$ in the form $R \cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]
 - (ii) Hence solve the equation

$$7\cos\theta + 24\sin\theta = 15$$
,

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

Oct/Nov 2006

2 Solve the equation

$$\tan x \tan 2x = 1$$
.

giving all solutions in the interval $0^{\circ} < x < 180^{\circ}$. [4]

[4]

May/June 2007

5 (i) Express $\cos \theta + (\sqrt{3}) \sin \theta$ in the form $R \cos(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$, giving the exact values of R and α .

(ii) Hence show that
$$\int_0^{\frac{1}{2}\pi} \frac{1}{\left(\cos\theta + (\sqrt{3})\sin\theta\right)^2} d\theta = \frac{1}{\sqrt{3}}.$$
 [4]

Oct/Nov 2007

5 (i) Show that the equation

$$\tan(45^\circ + x) - \tan x = 2$$

can be written in the form

$$\tan^2 x + 2\tan x - 1 = 0. ag{3}$$

(ii) Hence solve the equation

$$\tan(45^\circ + x) - \tan x = 2,$$

giving all solutions in the interval $0^{\circ} \le x \le 180^{\circ}$.

May/June 2008

4 (i) Show that the equation $\tan(30^{\circ} + \theta) = 2\tan(60^{\circ} - \theta)$ can be written in the form

$$\tan^2 \theta + (6\sqrt{3}) \tan \theta - 5 = 0.$$
 [4]

(ii) Hence, or otherwise, solve the equation

$$\tan(30^{\circ} + \theta) = 2\tan(60^{\circ} - \theta),$$

for
$$0^{\circ} \leqslant \theta \leqslant 180^{\circ}$$
. [3]

Oct/Nov 2008

- 6 (i) Express $5 \sin x + 12 \cos x$ in the form $R \sin(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α correct to 2 decimal places. [3]
 - (ii) Hence solve the equation

$$5\sin 2\theta + 12\cos 2\theta = 11,$$

giving all solutions in the interval
$$0^{\circ} < \theta < 180^{\circ}$$
.

May/June 2009

3 (i) Prove the identity
$$\csc 2\theta + \cot 2\theta \equiv \cot \theta$$
. [3]

(ii) Hence solve the equation
$$\csc 2\theta + \cot 2\theta = 2$$
, for $0^{\circ} \le \theta \le 360^{\circ}$. [2]

[5]

[4]

Oct/Nov 2009/31

5 (i) Prove the identity $\cos 4\theta - 4\cos 2\theta + 3 = 8\sin^4 \theta$. [4]

(ii) Using this result find, in simplified form, the exact value of

$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \sin^4 \theta \, \mathrm{d}\theta. \tag{4}$$

Oct/Nov 2009/32

4 The angles α and β lie in the interval $0^{\circ} < x < 180^{\circ}$, and are such that

$$\tan \alpha = 2 \tan \beta$$
 and $\tan(\alpha + \beta) = 3$.

Find the possible values of α and β .

[6]

May/June 2010/31

2 Solve the equation

$$\sin \theta = 2\cos 2\theta + 1$$
,

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

[6]

4 (i) Using the expansions of cos(3x - x) and cos(3x + x), prove that

$$\frac{1}{2}(\cos 2x - \cos 4x) \equiv \sin 3x \sin x.$$
 [3]

(ii) Hence show that

$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \sin 3x \sin x \, dx = \frac{1}{8}\sqrt{3}.$$
 [3]

May/June 2010/32

3 It is given that $\cos a = \frac{3}{5}$, where $0^{\circ} < a < 90^{\circ}$. Showing your working and without using a calculator to evaluate a,

(i) find the exact value of
$$\sin(a - 30^\circ)$$
, [3]

(ii) find the exact value of $\tan 2a$, and hence find the exact value of $\tan 3a$. [4]

May/June 2010/33

3 Solve the equation

$$\tan(45^{\circ} - x) = 2 \tan x,$$

giving all solutions in the interval $0^{\circ} < x < 180^{\circ}$.

[5]

- 7 (i) Prove the identity $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$. [4]
 - (ii) Using this result, find the exact value of

$$\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} \cos^3 \theta \, \mathrm{d}\theta. \tag{4}$$