| Centre Number | Candidate Number | Candidate Name |
|---------------|------------------|----------------|
|               |                  |                |
|               |                  |                |

### NAMIBIA SENIOR SECONDARY CERTIFICATE

### MATHEMATICS HIGHER LEVEL

8323/1

PAPER 1 2 hours

Marks 80 2020

Additional Materials: Geometrical instruments

Non programmable calculator

#### INSTRUCTIONS AND INFORMATION TO CANDIDATES

- Candidates answer on the Question Paper in the spaces provided.
- Write your Centre Number, Candidate Number and Name in the spaces at the top of this page.
- · Write in dark blue or black pen.
- You may use a soft pencil for any diagrams or graphs.
- · Do not use correction fluid.
- Do not write in the margin For Examiner's Use.
- Answer all questions.
- If working is needed for any question it must be shown below, or where working is indicated.
- The number of marks is given in brackets [] at the end of each question or part question.
- Non-programmable calculators may be used.
- If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to **three** significant figures. Give answers for angle sizes to **one** decimal place.

|     |        | - : H  |          | r calculator v |            | 0 4 40   |
|-----|--------|--------|----------|----------------|------------|----------|
| • _ | FOR 77 | either | LISE VOL | r calculator v | alle or li | SP 3 147 |

| For Examiner's Use |  |  |
|--------------------|--|--|
|                    |  |  |
|                    |  |  |
|                    |  |  |
| Marker             |  |  |
| Checker            |  |  |

[Turn over

This document consists of **14** printed pages and **2** blank page.



Republic of Namibia
MINISTRY OF EDUCATION, ARTS AND CULTURE

| 1 | A lake has an area of 63 800 000 000 square metres.  Write this area in square kilometres, correct to 2 significant figures. |                    |                                                                                                                                                          |        |
|---|------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|   |                                                                                                                              |                    |                                                                                                                                                          |        |
|   |                                                                                                                              |                    | Answer km                                                                                                                                                | ı² [2] |
| 2 | min                                                                                                                          | utes 40 seconds to | outes 45 seconds to solve a problem and it took Brian 11 solve the same problem. Express the ratio of Angelica's simply as possible, in the form $p:q$ . |        |
|   |                                                                                                                              |                    |                                                                                                                                                          |        |
|   |                                                                                                                              |                    | Answer::                                                                                                                                                 | . [2]  |
| 3 |                                                                                                                              |                    |                                                                                                                                                          |        |
|   |                                                                                                                              |                    | \$ 2300 per day.  40 kilometres free for each day hired.  Extra distance - \$ 25 per kilometre                                                           |        |
|   | (a)                                                                                                                          | Carmen hires a     | car for 5 days and drives a total distance of 350 kilometres.                                                                                            |        |
|   |                                                                                                                              | Work out her tota  | I cost.                                                                                                                                                  |        |
|   | 41.                                                                                                                          | D "11"             | Answer (a) N\$                                                                                                                                           | . [2]  |
|   | (b)                                                                                                                          |                    | r for $p$ days and drives a total distance of $q$ kilometres. on for the cost, in terms of $p$ and $q$ , and simplify your answer.                       |        |
|   |                                                                                                                              |                    | Answer <b>(b)</b>                                                                                                                                        | . [2]  |

| For      |
|----------|
| Examiner |
| Use      |

| 4 | Given that $x = 2h - 1$ | and $y = \frac{h}{3} + 1$ , express | 2x - 3y - 4 in terms of $h$ . |
|---|-------------------------|-------------------------------------|-------------------------------|
|---|-------------------------|-------------------------------------|-------------------------------|

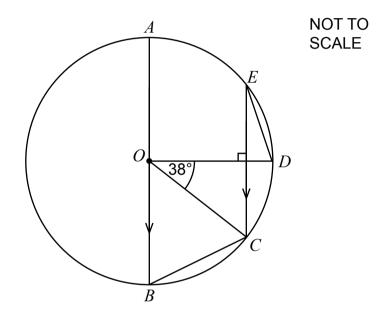
| Anewar  | [2] |
|---------|-----|
| AII3WCI | 141 |

Towns A and B are 241 km apart, correct to the nearest kilometre.
John drives from A to B at a speed of 120 km/h, correct to the nearest 10 km/h.
Find the longest possible time of John's journey, giving your answer in hours and minutes.

Answer ......hours .....minutes [3]

**6** A regular polygon has n sides.

Each exterior angle is  $\frac{5n}{2}$  degrees.


Find the value of n.

Answer  $n = \dots$  [3]

7 Given that  $\frac{m^{\frac{2}{3}}n^{\frac{1}{3}}}{\sqrt[3]{m^5n^{-2}}} = m^p n^q$ , find the values of p and q.

Answer 
$$p = ..... q = ..... [2]$$

8



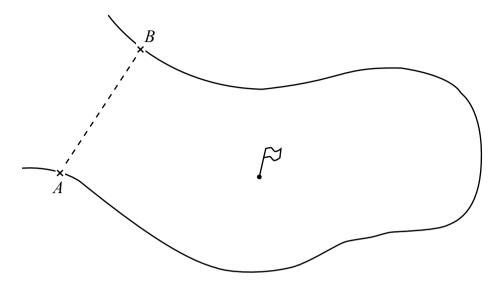
AB is the diameter of a circle, centre O. Points C, D and E lie on the circle.

EC is parallel to AB and perpendicular to OD. Angle DOC is 38°.

Find

(a) angle BOC,

**(b)** angle *CBO*,


Answer **(b)** Angle 
$$CBO = \dots ^{\circ}$$
 [1]

(c) angle EDO.

**9** The map shows part of a golf course.

A golfer hits a ball towards the flag but its actual path is always the same distance from A and B.

On the map, draw the path of the ball.



[2]

**10** The variables x and y are connected by the equation  $y = K(x + 1)^2$ , where K is a constant.

Pairs of corresponding values are given in the table below.

| x | 3  | -1 | n |
|---|----|----|---|
| y | 32 | m  | 8 |

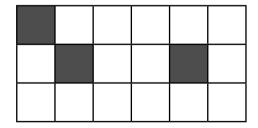
Calculate

(a) the value of K,

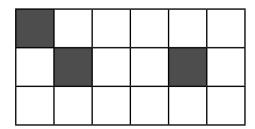
**(b)** the value of m,

(c) the possible values of n.

Answer (c) 
$$n = \dots n = \dots [3]$$


- 11 The position vectors of points K and L relative to the origin, O, are  $\overrightarrow{OK} = \begin{pmatrix} 16 \\ 2 \end{pmatrix}$ ,  $\overrightarrow{OL} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$ . Points M and N are the midpoints of OK and OL respectively.
  - (a) Express  $\overrightarrow{MN}$  as a column vector.

Answer (a) ...... [3]


**(b)** Find the value of  $|\overrightarrow{KL}|$ .

Answer (b)..... [2]

- 12 Shade one square in each diagram so that there is
  - (a) one line of symmetry,



(b) rotational symmetry of order 2.



[1]

| 13 | Two                                                                                                                                                                    | Two similar vases have heights which are in the ratio 3 : 2.            |     |  |  |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----|--|--|--|--|--|
|    | The                                                                                                                                                                    | The volume of the larger vase is 1080 cm <sup>3</sup> .                 |     |  |  |  |  |  |
|    | Cald                                                                                                                                                                   | culate the volume of the smaller vase.                                  |     |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |
|    |                                                                                                                                                                        | Answer (c) (i)                                                          | [2] |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |
| 14 |                                                                                                                                                                        | dy golfer from Walvis Bay plays a particular hole many times in a year. |     |  |  |  |  |  |
|    | On                                                                                                                                                                     | On 30% of all days, there is a wind blowing across the course.          |     |  |  |  |  |  |
|    | If the wind is blowing, the probability that she hits a straight drive is 0.2, but if the wind is not blowing, the probability that she hits a straight drive, is 0.7. |                                                                         |     |  |  |  |  |  |
|    | Find the probability that on a particular day                                                                                                                          |                                                                         |     |  |  |  |  |  |
|    | (a)                                                                                                                                                                    | the wind is not blowing and she hits a straight drive,                  |     |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |
|    | (h)                                                                                                                                                                    | Answer (a)she hits a straight drive.                                    | [2] |  |  |  |  |  |
|    | (2)                                                                                                                                                                    | one the a straight arres.                                               |     |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |
|    |                                                                                                                                                                        | Answer <b>(b)</b>                                                       | [2] |  |  |  |  |  |
|    | (c)                                                                                                                                                                    | She plays the hole on two successive days. Find the probability that    |     |  |  |  |  |  |
|    |                                                                                                                                                                        | she does not hit a straight drive on either of the two days.            |     |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |
|    |                                                                                                                                                                        | Answer (c)                                                              | [2] |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |
|    |                                                                                                                                                                        |                                                                         |     |  |  |  |  |  |

**15** The table shows information about the time, *t* minutes, taken by 80 girls to complete their mathematics examination.

| Time taken (t minutes) | 40 < <i>t</i> ≤ 60 | 60 < <i>t</i> ≤ 80 | 80 < <i>t</i> ≤ 120 | 120 < <i>t</i> ≤ 150 |
|------------------------|--------------------|--------------------|---------------------|----------------------|
| Frequency              | 5                  | 14                 | 32                  | 29                   |

(a) On a histogram, the height of the column for the interval  $60 < t \le 80$  is 2.8 cm. Calculate the height of the column for the interval  $80 < t \le 120$ .

**(b)** Write down the modal interval.

Answer **(b)** ......[1]

**16** The three numbers x, y and 25 have a mean of 27.

Find the value of x + y.

Answer: x + y = ... [2]

For Examiner's Use

8 cm 8 cm 8 cm

9

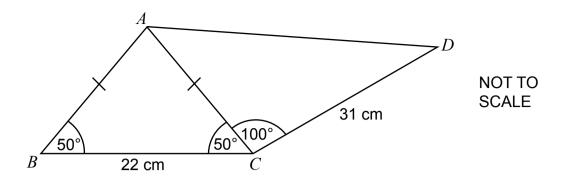
NOT TO SCALE

The diagram shows a rectangle *ABCE*.

D lies on EC.

DAB is a sector of a circle of radius 8 cm and sector angle 30°.

(a) Calculate the length of AE.


Answer (a) 
$$AE = .....$$
 [2]

**(b)** Calculate the area of the sector DAB.

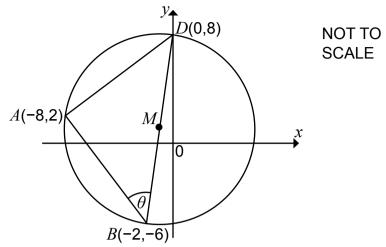
(c) Calculate the area of the shaded region.

Answer (c) ...... cm<sup>2</sup> [3]

For Examiner's Use



The diagram shows the frame of a toy bicycle made from five metal rods.


ABC is an isosceles triangle with base 22 cm and base angles 50°.

Angle ACD = 100° and CD = 31 cm.

Calculate the length of AD to the nearest whole number.

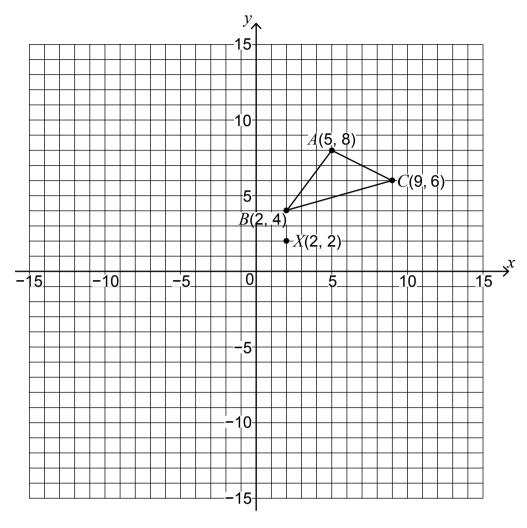
Answer 
$$AD$$
 = ......[4]

**19** Points A(-8, 2), B(-2, -6) and D(0, 8) are vertices of a triangle that lie on the circumference of a circle. The centre of the circle is M and BD is a diameter of the circle.



(a) Calculate the coordinates of M.

Answer (a) ..... [1]


(b) Show that the equation of the line parallel to BD and passing through the point A is given by y = 7x + 58.

Answer (b)

[2]

(c) Find the equation of the perpendicular bisector of the line BD.

Give your answer in the form of ax + by + c = 0, where a, b and c are integers.



The diagram above shows a triangle ABC in which A is (5,8), B is (2,4), C is (9,6). The point X is (2,2).

The following transformations can be applied to the triangle ABC

- **P** reflection in the line y = x
- **Q** translation by the vector  $\begin{pmatrix} -3 \\ 7 \end{pmatrix}$
- **R** rotation clockwise through 90° about X (2,2).
- (a) Find the image of point B, when transformation  $\mathbf{Q}$  is applied, followed by transformation  $\mathbf{P}$ .

Answer (a) ...... [2]

Answer **(b)**.....[2]

21



The speed-time graph shows how a car comes to rest in 7 seconds.

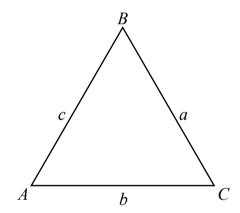
The part of the graph labelled PQ is a straight line.

Calculate

(a) the deceleration of the car between t = 2 and t = 4,

Answer (a) ..... m/s<sup>2</sup> [2]

**(b)** the distance travelled between t = 2 and t = 4,


Answer **(b)**..... m [2]

(c) the speed of the car in **kilometres per hour** when t = 0.

Answer (c) ......km/h [2]

**22** Triangle ABC is isosceles with AB = BC.

Side AB = c, side BC = a and side AC = b.



NOT TO SCALE

Prove that  $\cos B = 1 - \frac{b^2}{2a^2}$ .

[3]

# **BLANK PAGE**

# **BLANK PAGE**