Centre Number	Candidate Number	Candidate Name

NAMIBIA SENIOR SECONDARY CERTIFICATE

BIOLOGY ORDINARY LEVEL

4322/3

PAPER 3 Applied Practical Skills

2 hours

Marks 60

2017

Additional Materials: Ruler

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- Candidates answer on the Question Paper in the spaces provided.
- Write your Centre Number, Candidate Number and Name in the spaces at the top of this page.
- · Write in dark blue or black pen.
- You may use a soft pencil for any diagrams, graphs or rough working.
- · Do not use correction fluid.
- You may use a non-programmable calculator.
- Do not write in the margin For Examiner's Use.
- Answer all questions.
- The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
Total		

Marker	
Checker	

This document consists of 12 printed pages and 4 blank pages.

Republic of Namibia
MINISTRY OF EDUCATION, ARTS AND CULTURE

1 An investigation was carried out by some students to determine the effect of temperature on cell membranes in beetroot. Beetroot cells contain a red pigment in the vacuoles.

Cylinders were cut from the beetroot and washed in distilled water until no more colour appeared in the water. They were then blotted dry using a paper towel.

Test-tubes containing 5 cm³ of distilled water were placed into water baths set at 20°C, 30°C, 40°C, 60°C and 80°C and left for 5 minutes.

The beetroot cylinders were then placed into the different test-tubes in the different water baths for 30 minutes. Fig. 1.1 shows one of the water baths.

Fig. 1.1

After 30 minutes the test-tubes were shaken gently and the beetroot cylinders were removed. The students then described the colour of the water in the test-tubes.

Table 1.1 shows the results.

Table 1.1

temperature /°C	description of colour	
20	clear	
30	very pale pink	
40	pink	
60	dark pink	
80	red	

(a)	Make a large drawing of a plant cell and label the following parts: cell wall, cell membrane, vacuole, cytoplasm and nucleus.	
		[3]
(b)	Explain the reasons for the following procedures.	
	 Test-tubes were left for 5 minutes in the water baths before the cylinders were added. 	
		[1]
	Tests-tubes were shaken gently before the cylinders were removed.	[,1
		[1]
(c)	When the beetroot cylinders were initially cut, the red pigment leaked from the cut ends. Explain why.	[.,]
		[1]
(d)	Explain why it did not continue to leak.	[.]
		[1]
(e)	Explain why some of the pigment leaked out when the cylinders were placed in the test-tubes at different temperatures.	
/ f \	What is the relationship between the amount of pigment released and the	[1]
(f)	What is the relationship between the amount of pigment released and the temperature?	
		[1]

(g) Another group of students carried out the same investigation, but found some differences in the results obtained.

Below is a list of contributing factors which they thought may have caused these differences.

these differences.
Explain why each of the facts stated may have caused variation in the results.
Fact 1
The student had trouble removing the beetroot from the test-tube.
Fact 2
Not all the beetroot cylinders were the same size.
[2
Fact 3
The test-tubes contained different volumes of distilled water.
[1]
[14]

Pap	per chromatography can be used to separate the different pigments in leaves.	
(a)	Outline the process of paper chromatography.	
(b)	Students used paper chromatography to separate the pigments found in leaves. Fig. 2.1 illustrates the results of the chromatogram.	
	solvent front	
	pigment 1	
	2	
	3	
	4	
	4	
	first pencil line	
	Fig. 2.1	
	(i) Measure the distance from the first pencil line to the height for each	
	pigment. Record these values in Table 2.1 (column D).	

(ii) The colour of the pigments can be a general guide to identify the pigments or the Rf value can be used. The distance that the solvent front moves is 7 cm. Calculate the Rf value for each pigment and record the values in Table 2.1 (column E) using the formula shown.

Rf = distance pigment travels distance the solvent travels

[2]

(iii) Determine the name of each pigment using the information below. Complete column **F** in Table 2.1.

pigment	Rf values	
chlorophyll b	0.42	
xanthophyll	0.77	
chlorophyll a	0.60	
carotene	0.98	

[1]

[2]

(iv) Which pigment moved the greatest distance? What would cause this to happen?

D'		
Pigment	 	

Explanation

.....

Table 2.1

Α	В	С	D	E	F
pigment	colour of pigment	distance solvent front travels (cm)	distance pigment travels (cm)	Rf value	name of pigment
1	orange	7			
2	yellow	7			
3	blue - green	7			
4	yellow - green	7			

(c)	A student placed the plants	s in a room	with green light only.	Would these
	plants be able to grow?			

Explain your answer.					

[2]

[12]

3 An experiment was carried out to investigate the uptake and evaporation of water in a plant.

Four test-tubes were filled up to a line 1 cm from the rim. Four leaves of the same size and from the same plant were removed and treated as follows:

- Leaf 1: A thin layer of vaseline was smeared all over the upper surface of the leaf.
- Leaf 2: A thin layer of vaseline was smeared all over the lower surface of the leaf.
- Leaf 3: A thin layer of vaseline was smeared all over both surfaces of the leaf.
- Leaf 4: No vaseline was smeared on either surface.

Each leaf was placed in a test-tube with water as shown in Fig. 3.1 and all four were placed at the same spot where they will not receive direct sunlight.

Fig. 3.1

After one week, a syringe was used to add water to each of the test-tubes until the water level reached the original 1 cm³ mark from the top of each test-tube. The volume of water that needed to be added is shown in Table 3.1.

Table 3.1

leaf number	volume of water added cm ³
1	2.0
2	1.0
3	0.5
4	3.0

(a)	Explain how the layer of vaseline affects evaporation from a leaf surface.	
		[2]

(b)	xp	olain why it is necessary to use leaves of similar size.	
(c) ((i)	State which of the four leaves took up the least water.	[1]
(ii)	Not all of the water taken up by the leaf will be lost by evaporation from the leaves.	[1]
		State one use of the water taken up in the leaf itself.	
(d) ((i)	Describe the difference in water loss between leaves 1 and 2.	[1]
()	(-)		[1]
(ii)	Suggest an explanation for this difference.	ניין
			[2]
	Wa (i)	ter will evaporate directly from the exposed water surface in each test-tube Explain how this will affect the result.	Э.
(::\	Will this effect be the same for all of the leaves?	[1]
(1	ii)	Explain why.	
			[1]
(1	iii)	Describe how this apparatus can be modified to prevent evaporation from the water surface.	
			[1]

For
Examiner's
1150

(f)	Name three environmental conditions which will increase the uptake of water by a plant.	
	1	
	2	
	3	[3]
		[14]

4 Amylase is an enzyme that catalyses the breakdown of starch into sugars.

Describe an experiment you would carry out to find the rate of reaction between amylase and starch in a range of different temperatures (0°C, 20°C, 40°C, 60°C, 80°C). You may use the following materials and apparatus in your experiment.

amylase solution
iodine solution
measuring cylinders
pH test strips
starch solution
stopwatches
test-tubes
thermometers

water baths

4322/3/17 [Turn over

[9]

[9]

•	ercise has an e erent activities				vs the effect of		
		Ta	able 5.1				
ty	pe of activity	heart rate (be	eats/min)		average heart rate (beats/min)		
		trial 1	trial 2	trial 3			
re	sting	84	85	83	84		
	ller blading	156	150	162			
	eight lifting	120	105	114	113		
	atching the orld series	96	90	90	92		
(ii)	Which activity each trial?	produced the	least amount	of variation	n heart rate for		
(iii)	for 20 minutes	5.					
(iii)	for 20 minutes	s. nation to calcul					
(iii)	for 20 minutes Use this inform	a. nation to calcul inute period.			the world series		

(c) Plot the data in Table 5.1 in a bar chart to show the average heart rate for the four different activities.

[4]

[11]