Respiration

Question Paper

Level	Pre U
Subject	Biology
Exam Board	Cambridge International Examinations
Topic	The Cell
Sub Topic	Respiration
Booklet	Question Paper

Time Allowed: 59 minutes

Score: /49

Percentage: /100

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Part - A

- 1 ATP is a nucleotide that performs many essential roles in prokaryotic and eukaryotic cells. It is considered to be the major 'energy currency' of cells.
 - Fig. 21.1 shows the structure of ATP.

Fig. 21.1

a)	(1)	molecule of ATP that make it suitable for its role.
		[4]

	(ii)	Describe an example of ATP acting as an 'energy currency'.
		[2]
(b)	cata	e enzyme ribonucleotide reductase (RNR) is needed for DNA synthesis. The enzyme alyses the reaction in which adenosine diphosphate is converted to deoxyadenosine nosphate (dADP).
		ADP RNR dADP + H ₂ O reduced NADP NADP
	(i)	State how adenosine diphosphate differs from deoxyadenosine diphosphate.
		[1]
	(ii)	Suggest how dADP is used in the synthesis of DNA.

[2]

(c) Excess adenosine is deaminated to deoxyinosinol in a reaction catalysed by the enzyme, adenosine deaminase (ADA), which consists of one polypeptide.

Fig. 21.2 shows a ribbon model of ADA.

Fig. 21.2

Describe the structure of the enzyme, ADA, as shown in Fig. 21.2. You may add labels to the diagram to help your answer if you wish.
rei

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

A deficiency of ADA is a cause of severe combined immunodeficiency syndrome (SCID).

Children with non-functional adenosine deaminase are at risk of infections as a toxic product builds up inside T lymphocytes (T cells) and kills these cells.

(d)	Outline the roles of named T lymphocytes in the immune system.
	[3]
(e)	Gene therapy has been used to treat SCID.
	Explain the problems encountered in using gene therapy as a treatment for genetic diseases, such as SCID.
	[4]

[Total: 19]

Part - B

rganisms ir	the way	need to s in whic	syntnesi h this is:	achieve	explair d.	i the s	imilaritie	s and	differences	s bet
							•••••			
•••••										
• • • • • • • • • • • • • • • • • • • •										
		•••••			•••••					
		•••••			•••••					

[Total : 30]