| Centre Number | Candidate Number | Candidate Name | |---------------|------------------|----------------| | | | | | | | | #### NAMIBIA SENIOR SECONDARY CERTIFICATE ### PHYSICAL SCIENCE HIGHER LEVEL 8322/3 PAPER 3 Practical Test 2 hours Marks 40 2020 Additional Materials: As per instructions to subject teacher Non-programmable calculator ### **INSTRUCTIONS AND INFORMATION TO CANDIDATES** - · Candidates answer on the Question Paper in the spaces provided. - Write your Centre Number, Candidate Number and Name in the spaces at the top of this page. - · Write in dark blue or black pen. - You may use a soft pencil for any diagrams, graphs or rough working. - · Do not use correction fluid. - Do not write in the margin For Examiner's Use. - Answer all questions. - The number of marks is given in brackets [] at the end of each question or part question. - The Periodic Table is printed on page 8. - Chemistry practical notes are printed on page 9. | For Examiner`s Use | | | | | |--------------------|--|--|--|--| | 1 | | | | | | 2 | | | | | | Total | | | | | | Marker | | | | | | Checker | | | | | This document consists of **9** printed pages and **3** blank pages. Republic of Namibia MINISTRY OF EDUCATION, ARTS AND CULTURE 1 In this experiment you will investigate the relationship between a load attached to a spring and the extension it causes. The load (mass) will stretch the spring. At the same time an equal and opposite force is created in the spring. This force acts against the pull of the load. This force will restore the spring to its original length after the load is removed, provided that the force due to the load was not too large. Use g = 9.8 N/kg to calculate the values for force caused by the mass. (a) Use the equipment provided to set up the apparatus as shown in Fig. 1.1 above. (b) From your set-up measure the length, L_0 , of the unextended spring when no load is attached as shown in Fig. 1.2. the length of unextended spring, $L_0 = \dots$ [1] (c) Table 1.1 is used to record the length of the extended spring, the extension, x, the mass of the load attached and the force caused by the attached mass. Label the columns of Table 1.1, include the correct SI units. Table 1.1 | | | [2] | |-----|---|-----| | (d) | Expand Table 1.1 above to have six more rows. | [1] | | (e) | Attach the mass hanger of 100 g. Convert the mass into kg before recording in Table 1.1. | [1] | | (f) | Record the new value for the length of the extended spring in Table 1.1. | [1] | | (g) | Calculate the value of the extension caused by the mass and record this in Table 1.1. | [1] | | (h) | Now repeat the steps in (e) to (f) to find five more values for extension by increasing the mass. | | | (i) | Record your measurements and complete the Table 1.1. | [6] | | (j) | Remove all mass and measure the length of the unextended spring, L_n . | | | | Length of unextended spring, L _n = | | | (k) | Compare with reasons the values of L_0 and L_n . | | | | | | | | | [2] | (I) In the grid below draw a load (on *x*-axis) vs extension (on *y*-axis) graph, by choosing a suitable linear scale and plot the points based on your results in table 1.1. |
Use your graph to describe the relationship between the mass of the load and extension for this spring. | [4] | |---|---------------------| | | [1]
[20] | [3] [3] - You are provided with three solids, in three bottles labelled **A**, **D** and **E**. You will need to do some tests according to the Practical Notes contained in this question paper to determine the substances in each sample. - (a) Take three test tubes and label these A, D, and E using the marker pen provided. - (b) Transfer a small amount of solid **A** into the test tube labelled **A**, and record its colour. Repeat this process for solids **D** and **E** using the correct labelled test tubes. | | Α | D | E | |--------|---|---|---| | colour | | | | **(c)** Add a few drops of water but not more than 1 cm high into each test tube. Record your observations. | | A plus water | D plus water | E plus water | |----------|--------------|--------------|--------------| | colour | | | | | and any | | | | | physical | | | | | change | | | | (d) You are provided with one A4 sheet of coloured paper. State the colour of this paper: (e) Cut along the short side of the coloured paper to form a strip of approximately 5 mm width and length longer than the test tubes. Insert this strip of paper into the test tubes containing the solutions. Keep these test tubes with their content for part (f). Record your observations: | | A plus water plus immersed colour paper | D plus water plus
immersed colour
paper | E plus water plus immersed colour paper | |--------|---|---|---| | change | | | | | | | | | [1] (f) Use the test tubes and content of (e) but remove the papers. Put half of each solution into a separate clean test tube. To one half of each solution, add a few drops of silver nitrate solution. Record your observations in the first row of the table. To the other half add a few drops of aqueous ammonia, then add more drops of aqueous ammonia until it is in excess. Record your observations in the second row of the table. | | | A plus water | D plus water | E plus water | |------------------------------|------------------------------|--------------|--------------|--------------| | (i) 1st half
of solution | Few drops of silver nitrate | | | | | (ii) 2nd half
of solution | Few drops of aqueous ammonia | | | | | | Excess aqueous | | | | | | ammonia | | | | [4] (g) Label three clean test tubes A, D and E. Transfer a small amount of solid **A** into test tube labelled **A**. Repeat this process for solids **D** and **E** using the correct labelled test tubes. Light your heat source. Put your goggles on and your dust cap over your nose. Put damp pieces of litmus paper of each colour over the top of each test tube. Hold them in place using cotton wool or a small piece of sellotape. Slowly heat the test tubes carefully for no more than a few minutes and record all your observations on the heated solid and the litmus papers in the table. | | A plus litmus paper | D plus litmus
paper | E plus litmus
paper | |--------------|---------------------|------------------------|------------------------| | observations | • 1 | | |-----|--| | | | | | | | | | | (h) | Which c | of these | three | solutions | A, | D | and | E, | contains | а | transition | meta | |-----|---------|----------|--------|-----------|----|---|-----|----|----------|---|------------|------| | | cation? | Explain | your a | nswer. | | | | | | | | | | Solution | | |----------|--| |----------|--| | Exp | olanation | |-----|-----------| | | | | (i) | In another investigation, sample A is found to give a white precipitate with aqueous barium nitrate. Use the practical notes to identify what compound is in sample A . | | Exa | |-----|---|------|-----| | | | [1] | | | (j) | Use your observations to identify the ions present in sample D . | | | | | D: | [1] | | | (k) | Use your observation to identify the cation in sample ${\bf E}$ and the gas evolved from sample ${\bf E}$ during your experiments. | | | | | | | | | | | | | | | | [2] | | | | | [20] | | | | | | | | | | The | DATA
Periodic Tab | DATA SHEET
The Periodic Table of the Elements
Group | ents | | | | | | | | |-----------------------------------|---|---|-------------------------------------|-----------------------------------|--|-------------------------------------|-------------------------------------|---|---|--------------------------------------|-----------------------------------|--|------------------------------------|--------------------------------------|---|--|---------------------------------------| | _ | = | | | | | | | | | | | ≡ | Λ | ۸ | N | IIA | 0 | | | | | | | | | 1
H
Hydrogen | | | | | | | | | | Helium | | Lithium 3 23 Na Sodium 11 | Be
Beryllium
4
24
Mg
Magnesium
12 | | | | | • | | | | | | 11
B Boron 5 27 AI Aluminium 13 | 12
Carbon
6
Silicon
14 | Nitrogen 7 31 P Phosphorus 15 | 16
O
Oxygen
8
32
S
Sulfur | 19 Fluorine 9 35,5 Cl Chlorine 17 | 20
Neon
10
40
Ar
Argon | | 39 K Potassium | 40
Ca
Calcium
20 | 45
Sc
Scandium
21 | 48
Ti
Titanium
22 | 51
V
Vanadium
23 | 52
Cr
Chromium
24 | 55
Mn
Manganese
25 | 56
Fe
Iron
26 | 59
Cobalt
27 | 59
Ni
Nickel
28 | 64
Cu
Copper
29 | 65
Zn
Zinc
30 | 70
Ga
Gallium
31 | 73
Ge
Germanium
32 | 75
As
Arsenic
33 | 79
Se
Selenium
34 | 80
Br
Bromine
35 | 84
Kr
Krypton
36 | | 85
Rb
Rubidium
37 | 88
Sr
Strontium
38 | 89 Y ttrium | 91
Zr
Zirconium
40 | 93
Nb
Niobium
41 | 96
Mo
Molybdenum
42 | Tc
Technetium
43 | 101
Ru
Ruthenium
44 | 103
Rh
Rhodium
45 | 106
Pd
Palladium
46 | 108
Ag
Silver
47 | 112
Cd
Cadmium
48 | 115
In
Indium
49 | 119
Sn
Tin | 122
Sb
Antimony
51 | 128
Te
Tellurium
52 | 127
J
lodine
53 | 131
Xe
Xenon
54 | | 133
Cs
Caesium
55 | 137
Ba
Barium
56 | 139
La
Lanthanum
57 * | 178
Hf Hafnium 72 | 181 Ta Tantalum 73 | 184
W
Tungsten
74 | 186
Re
Rhenium
75 | 190
Os
Osmium
76 | 192 r
 r
 Iridium | 195
Pt
Platinum
78 | 197
Au
Gold | 201
Hg
Mercury
80 | 204 T<i>I</i> Thallium 81 | 207
Pb
Lead
82 | 209
Bis
Bismuth
83 | Po
Polonium
84 | At
Astatine
85 | Radon
86 | | Fr
Francium
87 | 226
Ra
Radium
88 | Actinium 89 | | | | | | | | | | | | | | | | | *58 - 71 La
†90 - 103 Æ | *58 - 71 Lanthanoid series
†90 - 103 Actinoid series | es
s | | 140
Ce
Cerium
58 | 141
Pr
Praseodymium
59 | 144
Nd
Neodymium
60 | Pm
Promethium
61 | 150
Sm
Samarium
62 | 152
Eu
Europium
63 | 157
Gd
Gadolinium
64 | 159
Tb
Terbium
65 | 162
Dy
Dysprosium
66 | 165
Ho
Holmium
67 | 167
Er
Erbium
68 | 169
Tm
Thulium
69 | 173
Yb
Ytterbium
70 | 175
Lu
Lutetium
71 | | Key | а Х | a = relative atomic mass X = atomic symbol b = proton (atomic) number | tomic mass
ymbol
omic) number | 232
Th
Thorium
90 | Pa
Protactinium
91 | 238
U
Uranium | Neptunium
93 | Pu
Plutonium
94 | Am
Americium
95 | Cm
Curium
96 | Bk
Berkelium
97 | Cf
Californium
98 | Es
Einsteinium
99 | Fm
Fermium
100 | Md
Mendelevium
101 | Nobelium
102 | Lr
Lawrencium
103 | The volume of one mole of any gas is 24 \mbox{dm}^3 at room temperature and pressure (r.t.p.). ## **CHEMISTRY PRACTICAL NOTES** ## **Test for anions** | anion | test | test result | |--|---|--| | carbonate (CO ₃ ²⁻) | add dilute acid | effervescence, carbon dioxide produced | | chloride (Cl ⁻) [in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | white ppt. | | iodide (I ⁻)
[in solution] | acidify with dilute nitric acid, then add aqueous lead (II) nitrate | yellow ppt. | | nitrate (NO ₃)
[in solution] | add aqueous sodium hydroxide,
then aluminium foil, warm
carefully | ammonia produced | | sulfate (SO ₄ ²⁻) [in solution] | acidify with dilute nitric acid, then add aqueous barium nitrate | white ppt. | ## Tests for aqueous cations | cation | effect of aqueous sodium hydroxide | effect of aqueous ammonia | |--------------------------------|---|---| | aluminium (AI³+) | white ppt., soluble in excess, giving a colourless solution | white ppt., insoluble in excess | | ammonium (NH +) | ammonia produced on warming | _ | | calcium (Ca ²⁺) | white ppt., insoluble in excess | no ppt., or very slight white ppt. | | copper(II) (Cu ²⁺) | light blue ppt., insoluble in excess | light blue ppt., soluble in excess, giving a dark blue solution | | iron(II) (Fe ²⁺) | green ppt., insoluble in excess | green ppt., insoluble in excess | | iron(III) (Fe ³⁺) | red-brown ppt., insoluble in excess | red-brown ppt., insoluble in excess | | zinc (Zn ²⁺) | white ppt., soluble in excess, giving a colourless solution | white ppt., soluble in excess, giving a colourless solution | # Test for gases | gas | test and test result | |-----------------------------------|----------------------------------| | ammonia (NH ₃) | turns damp red litmus paper blue | | carbon dioxide (CO ₂) | turns limewater milky | | chlorine (Cl ₂) | bleaches damp litmus paper | | hydrogen (H ₂) | 'pops' with a lighted splint | | oxygen (O ₂) | relights a glowing splint | ## **BLANK PAGE** ## **BLANK PAGE** ## **BLANK PAGE**