

education

Department of Education FREE STATE PROVINCE

Downloaded at testpapers.co.za

GRADE 10

MARKS: 50

TIME: 1 hours

This question paper consists of 4 pages

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION

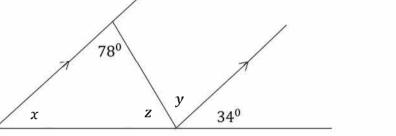
Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 4 questions.
- 2. Clearly show ALL calculations, diagrams, graphs, etc. that you have used to determine your answers.
- 3. Answers only will NOT necessarily be awarded full marks.
- 4. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 5. Diagrams are NOT necessarily drawn to scale.
- 6. You may use an approved scientific calculate for programmable and non-graphical), unless stated otherwise.
- 7. An information sheet with formulae is included at the end of the question paper.
- 8. Write neatly and legibly.

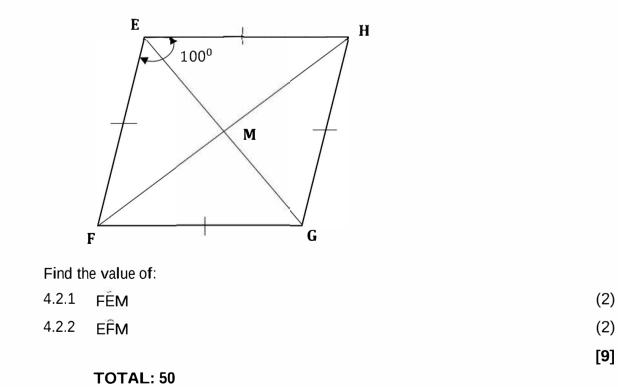
QUESTION 1

1.1	Show that 0,75 is rational number.	(1)	
1.2	Round 34,4678 off to two decimals		
1.3	Consider the following numbers: $\sqrt{25}$; $\sqrt{-7}$; π		
	Which one of the following numbers is:		
	1.3.1 Irrational	(1)	
	1.3.2 Rational	(1)	
	1.3.3 Non-real	(1)	
1.4	Determine two positive integers between which $\sqrt{33}$ lies.	(2)	
1.5	L.5 Simplify completely		
	1.5.1 $3x(2x-4xy)$	(2)	
	1.5.2 $(x-3)^2$	(2)	
	1.5.3 $(2r - p)(3r^2 - 4rp + p^2)$	(3)	
		[14]	
QU	ESTION 2		
2.1	Factorize completely		
	2.1.1 $2x^2 - 8$	(2)	
	2.1.2 $x^2 - 4x + 3$	(2)	
	2.1.3 $2 px + 3 qx - 3 qy$	(3)	
2.2	Simplify		
	27 8		
	$\frac{27}{27x^2 + 18x + 12}$	(4)	
		[12]	

QUESTION 3


3.1	Solve for x			
	3.1.1	(2x+1)(x-3) = 0		(2)
	3.1.2	3 [×] =1		(2)
	3.1.3	$-4 \le 3x - 1 \le 5$	(represent your answer graphically)	(4)
	3.1.4	$9^{2x+3} = 27^{x+5}$		(4)
3.2	2 Solve for x and y simultaneously $2x - y = -1$ and $x + 2y = 12$			(4)

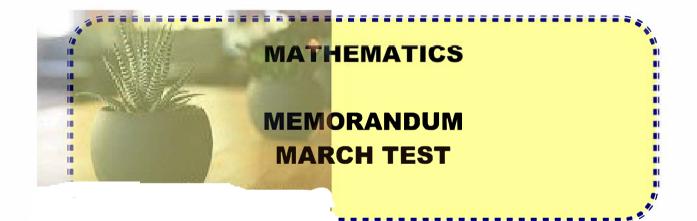
[16]


(5)

QUESTION 4

4.1 Find the values of x, y and z in the diagram below. Give a reason for each statement.

4.2 EFGH is a rhombus in which the diagonals EG and FH intersect at M. $F\hat{E}H = 100^{\circ}$



education

Department of Education FREE STATE PROVINCE

MARKS: 50

TIME: 1 HOUR

	STION	1	
1.1	$0,75$ $= \frac{75}{100}$ $\frac{3}{4}$		$\frac{75}{100} \checkmark$ OR $\frac{3}{4} \checkmark$
	8 703		4
1.2 1.3	34,46	78 = 34,47	✓ answer
	1.3.1	π	✓ answer
	1.3.2	√25	✓ answer
	1.3.3	$\sqrt{-7}$	✓ answer
1.4	√25 < 5 < √	wo positive integers between which $\sqrt{33}$ lies. $\sqrt{33} < \sqrt{36} \checkmark$ $\overline{33} < 6 \checkmark$ B lies between 5and 6	✓ √25 < √33 < √36 ✓ answer
1.5	1.5.1	$3x(2x - 4xy) = 6x^2 - 12x^2y$	distribution law ✓ 6x ² ✓ −12x ² y
	1.5.2	$(x-3)^{2} = (x-3)(x-3) \checkmark$ = x ² - 6x + 9 \lambda	$\checkmark (x-3)(x-3)$ $\checkmark x^2 - 6x + 9$
	1.5.3	(2r - p)(3r2 - 4rp + p2) = 6r ³ - 8r ² p + 2rp - 3r ² p + 4rp - p ³ = 6r ³ - 11r ² p + 6rp ² - p ³	✓ $6r^3 - 8r^2p + 2rp$ ✓ $-3r^2p + 4rp - p^3$ ✓ $-11r^2p$ and $+6rp^3$
QUES	STION	2	
2.1	2.1.1	$2x^2 - 8$	✓ HCF of 2
		$= 2(x^2 - 4) \checkmark$	✓ brackets
	212	$= 2(x+2)(x-2) \checkmark x^{2} - 4x + 3$	✓ ✓ Factors
	2.1.2	$x^{2} - 4x + 3$ = (x - 3)(x - 1) $\sqrt{}$	

	2.1.3	2 px + 3qx - 2 py - 3qy	
		$= (2 px - 2 py) + (3qx - 3qy) \checkmark$	
		$=2p(x-y)+3q(x-y)\checkmark$	
		$=(2y+3q)(x-y)\checkmark$	✓Grouping
		OR	✓ Common factor for
		$=(2px+3qx)+(-2py-3qy)\checkmark$	two brackets
		$= x(2p+3q) - y(2p+3q) \checkmark$	√answer
		$=(x-y)(2p+3q)\checkmark$	(2)
			(3)
	2.2	$\frac{27x^3 - 8}{27x^2 + 18x + 12}$	✓ ✓ Factorising numerator
		$=\frac{(3x-2)(9x^2+6x+4)}{3(9x^2+6x+4)} \checkmark \checkmark$	✓ Factorising denominator
		$3(9x^2+6x+4)$	√answer
		$=\frac{3x-2}{3}$	(4)
			[11]
QUE	STION	3	
3.1		Solve for x:	
	3.1.1	(2x+1) (x-3) = 0 (2x+1) = 0 or $(x-3) = 0$	$\checkmark x = -\frac{1}{2}$ or $\checkmark x = 3$
		$x = -\frac{1}{2} \checkmark \text{ or } x = 3\checkmark$	
			(2)
	3.1.2	$3^{x} = 1$ $3^{x} = 3^{0}$	$\checkmark 3^{x} = 3^{0}$
		$\begin{array}{c} 3^{n} = 3^{n} \\ x = 0 \end{array}$	√answer
			(2)
	3.1.3	$-4 \le 3x - 1 \le 5$ -4+1 \le 3x \le 5+1 -3 \le 3x \le 6 \checkmark	✓simplification
		$-1 \le x \le 2 \checkmark \checkmark$	√-1 ()
		•• ^v	√ 2 √graphical
		-1 2	representation
	3.1.4	9 ^{2x+3} =27 ^{x+5}	(4)
		$3^{2(2x+3)} = 3^{3(x+5)} \checkmark$	√ same base
		$3^{2x+6} = 3^{3x+15} \checkmark$	✓ simplifying
		$4x+6=3x+15 \checkmark$	✓ equating exponents

MARCH TEST 22

		x = 9 ✓	
			√answer
			(4)
	3.2	2x - y = -1(1) and $x + 2y = 12$ (2) x = -2y + 12(3) Substitute equation 3 into equation 1 Eq 1: $2(-2y + 12) - y = -1 \checkmark$ -4y + 24 - y = -1	 ✓ Making x subject of the formula ✓ Subt eq 3 into 1
		-5y = -25 y = 5 \checkmark Eq 3: x = -2(5) +12	✓ y = 5
		$x = 2 \checkmark$	$\sqrt{x} = 2$
			(4) [16]
QUEST	ΓΙΟΝ 4	4	[-0]
4.1		Statement $x = 34^{\circ}$ (Corrsp $\angle s =)\checkmark$	✓ S & R
		$y = 78$ (Alt $\angle s =)$	✓ S & R
		z = 180 – 112 ✓ (Int ∠ of ∆ or a ∠ s on straight line are suppl) ✓ z = 68° ✓	✓S ✓R ✓answer
			(5)
4.2 4	4.2.1	FEM = 50 \checkmark (Diagonals of rhombus bisect at the vertex $\angle s$) \checkmark	✓S ✓R (2)
4	4.2.2	EFM =180-(50+90) (sum of $\angle s in \Delta$) \checkmark EFM = 40° \checkmark	✓ S ✓ R (2)
			[9]