| Cand | Candidate Number | | | | | | | Candidate Name | |------|------------------|--|--|--|--|--|--|----------------| | | | | | | | | | | # JUNIOR SECONDARY CERTIFICATE ### PHYSICAL SCIENCE 1210/1 PAPER – Written 2 hour 30 minutes Marks 130 **2018** Additional Materials: Non-programmable calculator Soft pencil (HB type is recommended) #### INSTRUCTIONS AND INFORMATION TO CANDIDATES - Make sure that you receive the multiple choice answer sheet with your Candidate Number on it to answer section **A**. - For section **B**, candidates answer on the Question Paper in the spaces provided. - Write your Candidate Number and Name in the spaces at the top of this page. - Write in dark blue or black pen. - You may use a soft pencil for any rough work, diagrams or graphs. - · Do not use correction fluid. - Do not write in the margin For Examiner's Use. - Answer all questions. - The number of marks for section **B** is given in brackets [] at the end of each question or part question. - The Periodic Table is printed on page 27. | For Examiner's Use | | | | | | | | |--------------------|--|--|--|--|--|--|--| Marker | | | | | | | | | Checker | | | | | | | | This document consists of 27 printed pages. Republic of Namibia MINISTRY OF EDUCATION, ARTS AND CULTURE #### **SECTION A: MULTIPLE CHOICE QUESTIONS** - Answer this section on the multiple choice answer sheet provided. - For each question there are four possible answers A, B, C and D. - Choose the one you consider correct and mark your choice in soft pencil. - If you want to change an answer, erase the one you wish to delete completely. - Each question counts one mark. - 1 Which of the following instruments is used to measure the weight of an object? - A measuring cylinder - B spring balance - C stop watch - **D** thermometer - 2 Which of the following is the unit of mass? - A cubic metres - **B** kilograms - **C** kilometres - **D** millilitres - 3 The diagram shows a stopwatch used to determine the duration of an experiment. min second 02:09:00 min second 03:00:00 Beginning of experiment End of experiment How long did the experiment last? - A 51 seconds - **B** 129 seconds - C 180 seconds - **D** 209 seconds - **4** What is the name given to the bond formed between oppositely charged ions? - A covalent bond - **B** ionic bond - **C** metallic bond - **D** triple bond What is the total number of electrons in calcium ion Ca²⁺? 5 18 20 Α В | | С | 22 | | | | | | | |---|--------------|---|--|--|--|--|--|--| | | D | 40 | | | | | | | | 6 | Wh
A
B | e statements below describe elements in one Group of the Periodic Table. soft silvery - white colour good conductor of thermal energy and electricity atom contain a single valence electron at is the name given to these elements? alkali metals alkaline earth metals halogens | | | | | | | | _ | D | noble gas | | | | | | | | 7 | | Which of the following process is a physical change? | | | | | | | | | Α | combustion | | | | | | | | | В | corrosion | | | | | | | | | С | freezing | | | | | | | | | D | respiration | | | | | | | | 8 | Wh | ich of the following is a synthetic polymer? | | | | | | | | | A | metal | | | | | | | | | В | plastic | | | | | | | | | С | wood | | | | | | | | | D | wool | 9 The diagram shows a material under test. Which property is being tested? - compressive strength - В elasticity - C hardness - tensile strength - **10** The diagram shows structures of different polymers. Which structure is found in wood? A В C D - 11 Which of the following is an example of a decomposition reaction? - A calcium carbonate --- calcium oxide + carbon dioxide - carbon + oxygen → carbon dioxide В - iron + sulfur → iron sulfide C - nitric acid + zinc → zinc nitrate + hydrogen - 12 Which of the following substances is an alkali? - A hydrochloric acid - B sodium hydroxide - **C** vinegar - **D** water - 13 Which of the following methods is used in preparing salts? - **A** combustion - **B** decomposition - **C** neutralisation - **D** synthesis - 14 The diagram shows the composition of air. Which of the following gasses is gas Y? - **A** argon - B carbon dioxide - **C** nitrogen - **D** oxygen - **15** A girl weighing 400 N takes 4 seconds to run up the 3 m stairs case shown in the diagram. What is her average speed? - A 0.75 m/s - **B** 0.8 m/s - C 1.25 m/s - **D** 1.33 m/s - **16** Which of the following equations is used to calculate force? - **A** force = frequency x wavelength - **B** force = mass x gravitational field strength - **C** force = power x time - **D** force = pressure ÷ area - 17 In which of the following examples is the greatest pressure exerted? - A a brick resting on the ground - B a book resting on a table - C a knife cutting through a piece of meat - **D** an elephant standing on the ground - 18 Which of the following quantities is calculated by multiplying force by a distance? - A power - **B** pressure - **C** velocity - **D** work - 19 Which type of energy may be released when a nucleus of an atom breaks? - **A** geothermal energy - **B** hydroelectric energy - C nuclear energy - **D** solar energy - 20 A boy pushes a cart along a level road and then lets it to go. What are the energy conversions taking place when the cart starts moving? - A chemical → heat - B electrical → kinetic - C kinetic → chemical - **D** potential → kinetic - 21 What is the amount of current produced when a 0.005 C charge is allowed to flow for 0.2 seconds? - **A** 0.001 A - **B** 0.025 A - C 0.205 A - **D** 0.400 A - 22 The diagram shows an electric circuit, where a 3 V battery is connected to a resistor and an ammeter reading 1.5 A. What is the resistance in the circuit? - **A** 0.5 Ω - **B** 1.5 Ω - **C** 2.0 Ω - **D** 4.5 Ω - 23 Which of the following is the unit for electrical energy consumed? - **A** amperes - **B** kilowatt - **C** kilowatt-hour - **D** watt 24 Which diagram shows the correct pattern of field lines around a horse-shoe magnet? 25 The diagram shows a crane lifting a car at a scrap yard. When current is switched on, an electromagnet is made. What type of material is most suitable for use as an electromagnet? - A cobalt - **B** iron - **C** nickel - **D** steel - **26** What type of wave is sound? - A electromagnetic wave - **B** longitudinal wave - C radio wave - **D** transverse wave **27** A diagram shows a girl with her shadow cast on the ground. Which property of light causes the formation of shadows? - A light travels in a vacuum - B light travels in a straight line - C light can be dispersed - D light can be transmitted - **28** Which row in the table shows the properties of an image produced by a pin-hole camera and by a mirror? | | pin-hole | mirror | |---|---------------|-----------| | Α | larger | smaller | | В | same distance | same size | | С | virtual | inverted | | D | inverted | virtual | **29** A short-sighted person cannot see far object in focus. Which of the following can be used to correct short-sightedness? - A concave lens - B convex lens - **C** concave mirror - **D** convex mirror - **30** Which property of light leads to the formation of a spectrum of colours? - **A** absorption - **B** reflection - **C** refraction - **D** transmission ## **SECTION B: STRUCTURED QUESTIONS** - Write your answers in the spaces provided on the question paper. - Legible handwriting and **neat drawings in pencil**, where required, are essential. - Answers to numerical calculations must have the correct unit. - Symbols must be written/drawn correctly. - Incorrect spelling of element names and scientific terminology will be penalised. | 1 | The diagram | shows a | crystal | of potassium | permanganate, | a purple | chemical | |---|---------------|-----------|-----------|----------------|---------------|----------|----------| | | placed at the | bottom of | f contair | ner A . | | | | | (a) | Give the name of container A . | | |-----|--|-----| | | | [1] | | (b) | State and explain what observation will be made after sometime, if potassium permanganate is left in water as shows above. | | | | Observation | | | | Explanation | | | | | | | | | [2 | | (c) | Suggest the name of the process investigated above. | | | | | [1] | | | | ΓA: | **2** The table shows isotopes of 3 elements from the Periodic Table. | Isotope | Element | Mass
number | Atomic number | Neutron
number | |------------|----------|----------------|---------------|-------------------| | С | carbon | 12 | 6 | 6 | | С | carbon | 14 | 6 | 8 | | C <i>l</i> | chlorine | 35 | 17 | 18 | | C <i>l</i> | chlorine | 37 | 17 | (i) | | U | uranium | 235 | 92 | (ii) | | U | uranium | (iii) | 92 | 146 | | (a) | Give the meaning of the term <i>isotopes</i> . | | |------------|---|-----| | | | | | | | | | | | | | | | [2] | | (b)
(c) | Complete the table by filling in the missing information for (i), (ii) and (iii). Outline the use of isotopes of carbon and isotopes of uranium. | [3] | | | Carbon | | | | | [1] | | | Uranium | | | | | [1] | | (d) | State the name of a mine in Namibia which mines uranium. | | | | | [1] | | (e) | Explain what happens when a radioactive isotope goes through radioactive decay. | | | | | | | | | [2 | | | | [10 | 3 | The | e list shows the elements in Group 7 of the Periodic Table. | | |--------------|---|-----| | 19
F
9 | CI Br I At | | | (a) | State the name given to Group 7 elements. | | | (b) | Group 7 elements are said to be diatomic molecules. | [1] | | (3) | Explain the meaning of the term <i>diatomic</i> . | | | | | | | | | [2] | | (c) | Fluorine reacts with magnesium to form magnesium flouride as shown by the equation below. | | | | $Mg + F_2 \longrightarrow MgF_2$ | | | | (i) Draw a structure that illustrates the bonding in magnesium flouride. | (ii) State the time of handing in reagnesing flauride | [4] | | | (ii) State the type of bonding in magnesium flouride. | [1] | | | | [8] | | | | - | | | | | **4** The table shows information about three metals. | Metal | Name of ore | Method of extraction | | | |-----------|--------------|----------------------|--|--| | aluminium | bauxite | (i) | | | | (ii) | chalcopyrite | roasting in air | | | | iron | (iii) | heating with carbon | | | | ` ' | | Complete the table above by filling in the missing information for (i), (ii) and (iii). Give one reason why aluminium is used for making cooking pots. | | | | | | |-----|------|---|----|--|--|--|--| | | | | [1 | | | | | | (c) | Stee | el is a common alloy of iron. | | | | | | | | (i) | Explain the meaning of the term alloy. | | | | | | | | | | [1 | | | | | | | (ii) | Suggest the reason why steel has more uses than pure iron. | ι' | | | | | | | | | | | | | | | (d) | Stat | te one use of copper. | [1 | | | | | | | | | [1 | | | | | | 5 | | he laboratory, Mary was given three colourless liquids to test using a universal icator. | | | | | | | | |---|-----|--|--|-------------------|--|--|--|--|--| | | (a) | | gest the colour change when the universal indicator is added to an acid. | [1] | | | | | | | | (b) | Hyd | rochloric acid reacted with calcium carbonate to produce a salt and er two products. | r.1 | | | | | | | | | Writ | e the word equation for the reaction. | | | | | | | | | (c) | | rochloric acid is a strong acid. Suggest its pH value. | [3] | | | | | | | | | (ii) | State one property of a strong acid. | [1] | | | | | | | | (d) | Wat | er is one of the products of a reaction between an acid and a base. | [1] | | | | | | | | | Outl | ine the chemical test for water. | | | | | | | | | | Test | | | | | | | | | | | Res | ult | | | | | | | | | | | | [2]
[8] | 6 The diagram shows a coal burning power station. Carbon monoxide and sulfur dioxide are some of the main air pollutants emitted. | (a) | (i) | State the danger of carbon monoxide on humans. | | |-----|------|---|-----| | | (ii) | Explain the effect of sulfur dioxide on the environment. | [1] | | | | | | | (b) | red | other source of air pollution is vehicle exhaust emission. One way of ucing pollution is by fitting catalytic converters. | [2] | | | (i) | Suggest one other way of reducing the emitted pollution. | [1] | | | (ii) | Explain the role of catalytic converters. | | | (c) | Disc | cuss the dangers of lead pollution. | [1] | | | | | [1] | | | | | [6] | 7 | | | gravitational field strength on Ear | th is about 10 N/kg. | | |--------------|------|---|---------------------------------------|-----| | | Cald | culate the weight of the engine. | WeightN/kg | [2] | | <i>(</i> 1.) | | | | | | (b) | | kes a pulley 30 seconds to lift the .2 m. | engine into the car, through a height | | | | Cald | culate | | | | | (i) | the work done by the pulley. | (ii) | power of the pulley. State the uni | Work doneJ | [2] | | | (, | perior or and perior, craite and and | • | (c) | On (i) | the ground, the engine covers an area of 0.85 square meter (m²). Write down the formula for calculating pressure. | | For
Examiner's
Use | |-----|--------|--|------|--------------------------| | | | | [1] | | | | (ii) | Calculate the pressure exerted by the engine on the ground. | PressureN/m² | [2] | | | | | | [10] | | | | | generator | | |------------------|------|--|-----| | (a) | Stat | te the advantage of producing electricity this way. | | | | | | | | | | | [1] | | (b) | Sho | w the energy conversion in the generator. | | | | | | | | | | | [2] | | (c) | (i) | A light bulb which takes in 80 J electrical energy produces only 50 J of light energy. | | | | | Calculate the efficiency of this bulb. | Efficiency % | [2] | | | (ii) | Explain why the bulb is not 100% efficient. | | | | | | | | (d) | Stot | to two non renowable courses of anorgy | [1] | | (u) | | te two non-renewable sources of energy. | | | | | | | | | 2 | | [2] | | | | | [8] | [1] **9** Jane investigates how the resistance of a bulb changes as she increased the current by using a variable resistor, and record the corresponding potential difference. The diagram represents the circuit. - (a) Draw a circuit symbol of a variable resistor in the space provided on the diagram. - (b) State the type of connection between the - (i) ammeter and the lamp,[1] (ii) lamp and the voltmeter. [1] (c) Jane then plots the graph below. Use the graph to | (i) | find the value of the current when the voltage is 3.0 V. | | |-----|--|-----| | | | [1] | (ii) calculate the resistance of the bulb when the voltage is 3.0 V.Show your working. Resistance [2] | | (iii) | Interpret the relationship between the current and voltage of the bulb and give a reason for your answer. | | Exa | |-----|-------|---|------|-----| | | | Relationship | | | | | | Reason | | | | | | | [2] | | | | (iv) | State whether the bulb is an ohmic or a non-ohmic conductor. | | | | | | | [1] | | | (d) | Out | line two ways to increase the resistance of a conductor. | | | | | 1 | | | | | | 2 | | [2] | | | | | | [11] | | **10** The diagram shows a simple experiment on how electricity can be generated. | (a) | (i) | Describe how the electrical current is produced in the experiment shown in the diagram. | | |-----|-------|---|-----| | | | | | | | | | | | | | | [2 | | | (ii) | State the observation made that confirms that an electric current is being produced. | - | | | | | [1] | | | (iii) | State two ways to increase the amount of induced current. | | | | | 1 | | Examiner's Use (b) After electricity is generated at a power station it is transmitted using transformers. | | (i) | Identify the type of transformer Y and give its use. | | |-----|------|---|----| | | (ii) | Suggest the reason why electricity is transmitted at high voltage. | [1 | | | | | [1 | | (c) | | e of the common domestic appliances using electrical energy in the nes is a kettle. | | | | (i) | Calculate the current flowing in a kettle if it has a power rating of | | 2 000 W and uses a voltage of 240 V. | (ii) | Current | [2] | |------|---------|-----| | | | | | | | [1] | | |] | 10] | 11 The diagram shows a wave motion of a source having a frequency of 2 Hz. For Examiner's Use (a) Identify the type of the wave above. |
[| 1 | | |-------|---|--| | | | | (b) Use the above diagram to determine the value of the | (i) | wavelength. | | |-----|-------------|-----| | | | [1] | (ii) amplitude. (c) Calculate the speed of the wave. [6] 25 **12** The diagram shows the apparatus used to demonstrate how sound wave travels. to electric connection switch cork bell jar electronic bell — to vacuum pump The air is pumped out of the bell jar to create a vacuum. (a) Explain why sound cannot be heard in a vacuum. **(b)** Human and animals hear sound of different frequency range. State the range of audible frequency for human. (ii) Describe how the ear receives sound wave. [6] Examiner's Use 13 Light is refracted when travelling through different media. Diagram A and B show different cases of refraction. | (a) | in diagram b , give the name of the ray labelled a . | | |-----|--|-----| | | | [1] | | (h) | Describe two properties of the image formed in diagram A | | | |
5 | 5 | |---|-------|---| | | | | | | | | | | | | | 1 | | | | |
 |
 | | | | | | | | | | | | | | | | | | | 0 | | | | | | | | |
 |
 | | | |
 | | - (c) On diagram A, draw the image to indicate its position. [2](d) In diagram B, state the name of line b. -[1] [6] [2] | | | | | | | | | | | _ | Ę | |---|-----|-----|---------------------------|--|------------------|-------------------------------------|-------------------------------------|---|----------------------------------|---|---| | | | 0 | 4 Helium | Neon 10 40 Ar | Argon
18 | Krypton 36 | 131
Xe
Xenon
54 | Rn
Radon
86 | | 175
Lu
Lutetium | Lr
Lawrencium
103 | | | | II/ | | 19
Fluorine
9
35,5
C | Chlorine
17 | 80
Br
Bromine
35 | 127 I lodine 53 | At
Astatine
85 | | 73
Yb
Ytterbium
70 | No belium | | | | IA | | Oxygen 8 | Sulfur
16 | Selenium | 128
Te
Tellurium
52 | Po
Polonium
84 | | 169
Tm
Thulium
69 | Md
Mendelevium
101 | | | | ^ | | N Nitrogen 7 | Phosphorus
15 | As
Arsenic | 122
Sb
Antimony
51 | 209
Bi
Bismuth
83 | | 167
Er
Erbium
68 | Fm
Fermium
100 | | | | Λ | | 12
Carbon
6
28
Si | Silicon
14 | 7.3
Ge
Germanium
32 | Sn
Tin
50 | 207
Pb
Lead
82 | | 165
Ho
Holmium
67 | Es
Einsteinium
99 | | DATA SHEET
The Periodic Table of the Elements
Group | | = | | 11
B
Soron
5
27
A | Aluminium
13 | 70
Ga
Gallium
31 | 115
In
Indium
49 | 204 T/ Thallium | | 162
Dy
Dysprosium
66 | Cf
Californium
98 | | | | | | | 90 | 55
Zn
Zinc
30 | 112
Cd
Cadmium
48 | 201
Hg
Mercury
80 | | 159
Tb
Terbium
65 | Bk
Berkelium
97 | | | | | | | 2 | Cu
Copper
29 | 108
Ag
Silver
47 | 197
Au
Gold
79 | | 157
Gd
Gadolinium
64 | Cm
Curium | | | dno | | | | S | Nickel | 106
Pd
Palladium
46 | 195
Pt
Platinum
78 | | 152
Eu
Europium
63 | Am
Americium
95 | | | ῑο | | | | S | Cobalt 27 | 103
Rh
Rhodium
45 | 192 Ir
Ir
Iridium
77 | | 150
Sm
Samarium
62 | Pu
Plutonium
94 | | Ę | | | 1
H
Hydrogen | | ü | 56
Fe
Iron
26 | 101
Ru
Ruthenium
44 | 190
Os
Osmium
76 | | Pm
Promethium
61 | Np
Neptunium
93 | | | | | | | 2 | 55
Mn
Manganese
25 | Tc
Technetium
43 | 186
Re
Rhenium
75 | | 144
Nd
Neodymium
60 | 238
U
Uranium
92 | | | | | | | c c | 52
Cr
Chromium
24 | 96
Mo
Molybdenum
42 | 184
W
Tungsten
74 | | 141
Pr
Praseodymium
59 | Pa
Protactinium
91 | | | | | | | 2 | 51
V
Vanadium
23 | 93
Nb
Niobium
41 | 181 Ta Tantalum 73 | | 140
Ce
Cerium
58 | 232
Th
Thorium
90 | | | | | | | é | 48
Ti
Titanium
22 | 91
Zr
Zirconium
40 | 178
Hf Hafnium 72 | | 1 | nass umber | | | | | | | | Scandium 21 | 89 × | 139 La
Lanthanum
57 * | Actinium 89 † | s | a = relative atomic mass X = atomic symbol b = proton (atomic) numbe | | | | = | | Beryllium 4 24 Mg | Magnesium
12 | 40
Ca
Calcium
20 | 88
St
Strontium | 137
Ba
Barium
56 | 226
Ra
Radium
88 | *58 - 71 Lanthanoid series
†90 - 103 Actinoid series | × a | | | | _ | | Lithium 3 23 Na | Sodium
11 | 59
K
Potassium
19 | 85
Rb
Rubidium
37 | 133
Csesium
55 | Fr
Francium
87 | *58 - 71 Le | Key | The volume of one mole of any gas is 24 \mbox{dm}^3 at room temperature and pressure (r.t.p.). JSC 2018, Physical Science