NAMIBIA SENIOR SECONDARY CERTIFICAT	ſE
CHEMISTRY ADVANCED SUBSIDIARY LEVEL	8224/3
PAPER 3 Advanced Practical Skills	2 hours
Marks 40	2022
	-
Additional Materials: As per instructions to subject teacher	
Non-programmable calculator	
 INSTRUCTIONS AND INFORMATION TO CANDIDATES Candidates answer on the Question Paper in the spaces provided. 	
 Write your Centre Number, Candidate Number and Name in the spaces at th Write in dark blue or black pen 	he top of this page.
 You may use a soft pencil for any diagrams, graphs or rough working. 	
 Do not use correction fluid. 	
• Do not write in the margin For Examiner's Use.	
Answer all questions.	
• The number of marks is given in brackets [] at the end of each question or	part question.
 Qualitative Analysis Notes are printed on pages 11 and 12. 	
The Periodic Table is printed on page 13.	For Examiner`s Use
	1
	2
	3
	Total
NU T	Marker
	Checker

This document consists of **13** printed pages and **3** blank pages.

Republic of Namibia

MINISTRY OF EDUCATION, ARTS AND CULTURE

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 In this experiment you will determine the concentration of a solution of hydrochloric acid by titration with sodium hydroxide.

You are provided with the following:

A is a solution containing 4.00 g dm⁻³ of sodium hydroxide, NaOH,

B is hydrochloric acid

methyl orange indicator

(a) Method

Dilution of B

- Pipette 25.0 cm³ of **B** into the 250 cm³ volumetric flask.
- Make the solution up to the mark using distilled water.
- Insert the flask 20 times to ensure the solution is fully mixed.
- This solution of hydrochloric acid is **C**. Label the volumetric flask **C**.
- Rinse the pipette thoroughly.

Titration

- Rinse out the burette with a small amount of **C**.
- Fill the burette with **C** up to the 0.00 cm³ mark.
- Pipette 25.0 cm³ of **A** into a conical flask.
- Add a few drops of methyl orange.
- Perform a rough titration and record your burette readings in the space below.

The rough titre is cm³

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Draw a suitable table and record all of your burette readings and the volume of **C** added in each accurate titration.

For Examiner's

Use

Ι	
II	
III	
IV	
V	
VI	
VII	
	[7]

(b)	(b) From your accurate titration results, calculate a suitable value of the volum of C to be used in your calculations. Show clearly how you calculated this value.						
(c)	Cal	25.0 cm ³ of A requirecm ³ of C .	[1]				
(C)	(i)	Give your answers to (ii), (iii) and (iv) to the appropriate number of significant figures.	[1]				
	(ii)	Calculate the number of moles of sodium hydroxide, NaOH, in the volume of A calculated in (b) .					
		malos of NoOH – mol	[4]				
	(iii)	Write the equation for the neutralisation of hydrochloric acid with sodium hydroxide. Include state symbols.	[']				
		Deduce the number of moles of hydrochloric acid that reacted with the sodium hydroxide in (ii) .					
		moles of hydrochloric acid = mol	[1]				

3

(iv) Calculate the concentration, in mol dm ⁻³ of hydrochloric acid in B in mol dm ⁻³ .	For Examiner's Use
concentration = mol dm ⁻³ [2] [Total:13]	

2 In this experiment you will determine the enthalpy change, ΔH , for the reaction shown.

 $CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$

You will determine the enthalpy changes for the reactions of calcium oxide and calcium carbonate with hydrochloric acid. Excess hydrochloric acid will be used in each reaction.

- B is hydrochloric acid
- D is calcium oxide, CaO
- **E** is calcium carbonate, $CaCO_3$
- (a) Determination of the enthalpy change for the reaction of calcium oxide, **D**, with hydrochloric acid, **B**.

Method

For this question you will need to draw suitable table(s) for your results.

- Support a polystyrene cup in the 250 cm³ beaker.
- Use the 50 cm³ measuring cylinder to transfer 50 cm³ of **B** into the polystyrene cup.
- Measure and record the initial temperature of the solution.
- Weigh the container with **D**. Record the mass.
- Add all the **D** from the container to the **B** in the polystyrene cup. **B** is in excess.
- Stir constantly until the maximum temperature is reached.
- Measure and record the maximum temperature.
- Weigh the container with any **D** remaining. Record the mass.
- Calculate and record the mass of **D** used.
- Calculate and record the temperature rise.

I

Π

III

IV

For Examiner's Use

		6	- For
(b)	Cal	Iculations	Examiner's
	(i)	Calculate the energy produced during this reaction. (Assume that 4.2 J are needed to raise the temperature of 1.0 cm ³ of solution by 1.0°C).	
	(ii)	energy produced = J [1 Calculate the number of moles of CaO used.]
	(iii)	moles of CaO used = mol [1 Calculate the enthalpy change, in kJ mol ⁻¹ , for the reaction below. $CaO(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(I)$]
		enthalpy change = kJ mol ⁻¹ [1 sign value	

7

- (c) Determination of the enthalpy change for the reaction of calcium carbonate, E, with hydrochloric acid, B.
 - (i) Method

For this question you will need to draw suitable table(s) for your results.

- Support the second polystyrene cup in the 250 cm³ beaker.
- Use the 50 cm³ measuring cylinder to transfer 50 cm³ of **B** into the polystyrene cup.
- Measure and record the initial temperature of the solution.
- Weigh the container with **E**. Record the mass.
- Add all the **E** from the container to the **B** in the polystyrene cup. **B** is in excess.
- Stir constantly until the maximum temperature is reached.
- Measure and record the maximum temperature.
- Weigh the container with any **E** remaining. Record the mass.
- Calculate and record the mass of **E** used.
- Calculate and record the temperature rise.

(d)	Use your values for the enthalpy changes calculated in (b)(iii) and (c)(iii) to calculate the enthalpy change for the reaction.	Ex
	$CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$	
	enthalpy change = kJ mol ⁻¹ [1]	
(0)	Sign Value	
(e)	taller polystyrene cup of the same diameter was used.	
	State whether you agree with the student and justify your statement.	
	Statement	
	Justification	
	[1]	
(f)	Give the error in a single balance reading.	
	error = ± g	
	Tick (\checkmark) the row which represents the greater percentage error.	
	The percentage error in the mass of calcium oxide used.	
	The percentage error in the mass of calcium carbonate used.	
	Calculate the greater percentage error.	
	greater % error = %	
	[2]	
	[Total:15]	

3 Qualitative Analysis

Instructions

At each stage of any test you are to:

- Record details of the following:
 - colour changes seen
 - the formation of any precipitate
 - the solubility of such precipitates in an excess of the reagent added.
- Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

9

- Where gases are released, they should be identified by a test, described in the **appropriate place in your observations**.
- You should indicate clearly at what stage in a test a change occurs.
- No additional tests for ions present should be attempted.
- If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

(a) You will investigate F.

To all your sample of **F** in a boiling tube add 4 cm depth of distilled water. Shake the boiling tube until all the solid gas dissolved. The solution produced is **G**.

Carry out the tests described using separate portions of solution G.

Test	Observations
 (i) To a 1 cm depth of solution in a test-tube, add a few drops of aqueous sodium hydroxide, 	
then add excess aqueous sodium hydroxide.	
To a 1 cm depth of solution in a test-tube, add an excess of aqueous ammonia.	
To a 1 cm depth of solution in a boiling tube, add aluminium foil and aqueous sodium hydroxide, then warm gently.	

[5]

[Turn over

8224/3/22

		10		5
	(ii)	Use your observations from the table to identify two ions present in solution G .		Examiner's Use
		1		
		2	[2]	
	(iii)	Give the ionic equation for one precipitation reaction observed in (i). Include state symbols.		
			[1]	
	(iv)	State one safety precaution you have considered while doing this experiment.		
			[1]	
(b)	A st eith	udent is given an unlabelled bottle containing a colourless liquid that is er ethanol, CH ₃ CH ₂ OH, or ethanoic acid, CH ₃ COOH.		

In a suitable table, describe the tests for each liquid and expected positive results for each of the tests that would be carried out to allow the student to confirm the identity of each liquid.

[3]

[Total:12]

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (A/³⁺)	white ppt., soluble in excess	white ppt., insoluble in excess
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt.
barium (Ba²+)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
ammonium (NH_4^+)	no ppt. ammonia produced on warming	-
chromium(III) (Cr ³⁺)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess, giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
magnesium (Mg ²⁺)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese (II) (Mn²⁺)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc (Zn ²⁺)	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C/ ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt. (soluble in dilute ammonia)
bromide (Br [_]) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	cream ppt. (partially soluble in dilute ammonia)
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt (insoluble in dilute ammonia)
nitrate (NO ₃ -) [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced
nitrite (NO ₂ ⁻) [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify with dilute nitric acid, then add aqueous barium chloride/nitrate	white ppt, insoluble in excess dilute strong acids
sulfite (SO ₃ ²⁻) [in solution]	acidify with dilute nitric acid, then add barium chloride/nitrate	white ppt, soluble in dilute strong acids

3 Tests for gases

gas	test and test result
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO_2)	turns limewater 'milky'
chlorine (Cl_2)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint

		18	4.0 Helium 2	20.2 Ne Neon	39.9 Ar Argon	83.8 Kr Krypton 36	131.3 Xe Xenon	Radon 86		175.0 Lu Lutetium 71	L Lr Lawrencium 103		
		17		19.0 F Fluorine 9	35,5 C1 Chlorine 17	79.9 Br Bromine 35	126.9 I lodine 53	- At Astatine 85		173.1 Yb Ytterbium 70	- Nobelium 102		
		16		16.0 O Oxygen	32.1 S Sulfur 16	79.0 Se Selenium 34	127.6 Te Tellurium 52	Polonium	- Lv Livermorium 116	168.9 Thulium 69	- Me 101		
		15		14.0 N Nitrogen 7	31.0 P Phosphorus 15	74.9 AS Arsenic 33	121.8 Sb Antimony 51	209.0 Bi Bismuth 83		167.3 Er Erbium 68	Fermium		
		14		12.0 C Carbon 6	28.1 Silicon 14	72.6 Ge Germanium 32	118.7 Sn Tin	207.2 Pb Lead 82	- F1 Flerovium 114	164.9 Ho 67	- Einsteinium 99		
		13		10.8 Boron 5	27.0 Al Aluminium 13	69.7 Ga Gallium 31	114.8 Indium 49	204.4 T/ Thallium 81		162.5 Dy Dysprosium 66	- Californium 98		
					12	65.4 Zn 30	112.4 Cd Cadmium 48	200.6 Hg Mercury 80	- Copermicium 112	158.9 Tb 65	- BK Berkelium 97		
ents	Group					£	63.5 Cu Copper 29	107.9 Ag Silver	197.0 Au Gold 79	- Rg Roentgenium 111	157.3 Gd Gadolinium 64	Curium 96	
ble of the Eleme						6	58.7 Ni Nickel 28	106.4 Pd Palladium 46	195.1 Pt Platinum 78	- Darmstadtium 110	152.0 Eu 63	Americium	
he Periodic Ta							6	58.9 Co Cobalt 27	102.9 Rh Rhodium 45	192.2 Ir 1ridium 77	_ Mt Meitnerium 109	150.4 Sa marium 62	Plutonium 94
			1.0 H Hydrogen		œ	55.8 Fe Iron 26	101.1 Ru Ruthenium 44	190.2 Os Osmium 76	- Hs Hassium 108	- Pm 61	, Np Neptunium 93		
					2	54.9 Mn Manganese 25	- Tc Technetium 43	186.2 Re Rhenium 75	- Bh Bohrium 107	144.4 N d Neodymium 60	238.0 Uranium 92		
							6	52.0 Cr Chromium 24	95.9 Mo Molybdenum 42	183.8 V 74 74	- Sg Seaborgium 106	140.9 Pr Fraseodymium	231.0 Pa 91
					~	nass nbol umber	מ	50.9 Vanadium 23	92.9 Nb Niobium 41	180.9 Ta Tantalum 73	- Dubnium 105	140.1 Ce 58	232.0 Th 90
			Ke	 = relative atomic n = atomic syn = proton (atomic) n. 	4	47.9 Ti Titanium 22	91.2 Zr Zirconium 40	178.5 Hf 72	- Rutherfordium 104				
				× ×	۳ ۳	45.0 Sc 21	88.9 Yttrium 39	138.9 La Lanthanum 57 *	actinoids 89 - 103	pioner	noid		
		2		9.0 Be Beryllium 4	24.3 Mg Magnesium 12	40.1 Ca Calcium 20	87.6 Sr 38	137.3 Ba Barium 56	, Radium 88	Lant	Actin		
		1		6.9 Lithium 3	23.0 Na Sodium 11	39.1 K Potassium 19	85.5 Rb Rubidium 37	132.9 Cs Caesium 55	Fr Francium 87	*			

13

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.).

8224/3/22

321101

BLANK PAGE

BLANK PAGE

BLANK PAGE

16

The DNEA acknowledges the usage and reproduction of third party copyright material in the NSSC Assessment, with and without **permission** from the copyright holder. The Namibian Government Copyright Act allows copyright material to be used limitedly and fairly for educational and non-commercial purposes.

The Directorate of National Assessment and Examinations operates under the auspices of the Ministry of Education, Arts and Culture in Namibia.