	Cambridge International AS & A Level	Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Le	way papa cambridge	e.con
	CANDIDATE NAME			X
	CENTER NUMBER	CANDIDATE NUMBER		
* 3 \	CHEMISTRY (L	JS)	9185/23	
6 5	Paper 2 Structu	ured Questions AS Core	May/June 2014	
2 4			1 hour 15 minutes	
6 5	Candidates ans	wer on the Question Paper.		
8 3	Additional Mate	rials: Data Booklet		

READ THESE INSTRUCTIONS FIRST

Write your Center number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. A Data Booklet is provided.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 9 printed pages and 3 blank pages.

Answer **all** the questions in the spaces provided.

- www.papacambridge.com 1 (a) Define the term mole.[1]
 - (b) 10 cm^3 of a gaseous hydrocarbon, $C_x H_v$, was reacted with 100 cm^3 of oxygen gas, an excess.

The final volume of the gaseous mixture was 95 cm³.

This gaseous mixture was treated with concentrated, aqueous sodium hydroxide to absorb the carbon dioxide present. This reduced the gas volume to 75 cm³.

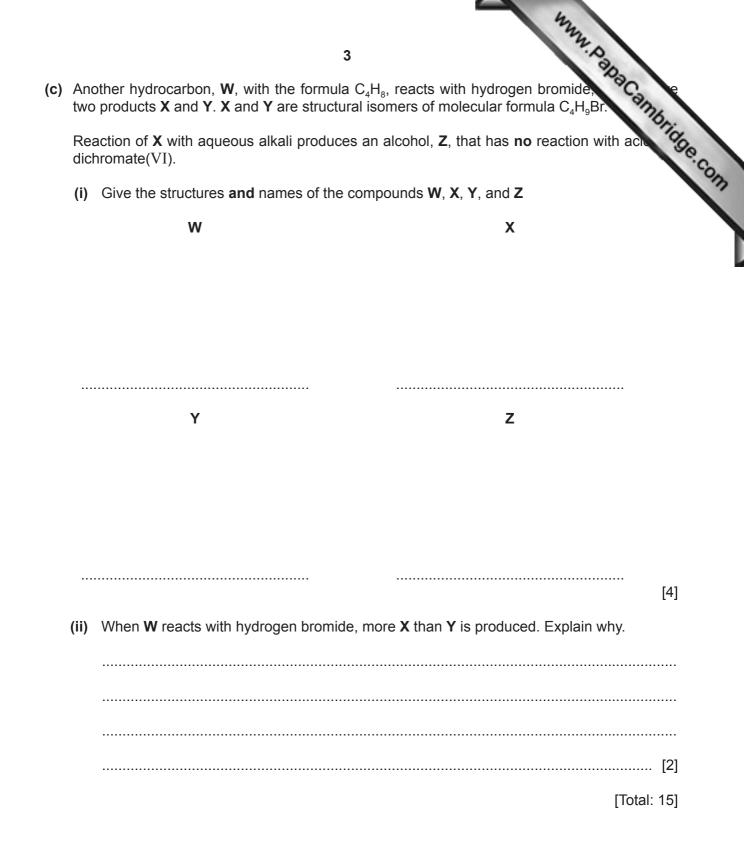
All gas volumes were measured at 298 K and 100 kPa.

- (i) Write an equation for the reaction between sodium hydroxide and carbon dioxide.
- (ii) Calculate the volume of carbon dioxide produced by the combustion of the hydrocarbon.

volume of CO_2 produced = cm³ [1]

(iii) Calculate the volume of oxygen used up in the reaction with the hydrocarbon.

volume of O_2 used = cm³ [1]


(iv) Use your answers to (b)(ii) and (b)(iii), together with the initial volume of hydrocarbon, to balance the equation below.

$$\dots C_{x}H_{y} + \dots O_{2} \rightarrow \dots CO_{2} + zH_{2}O$$
[2]

(v) Deduce the values of *x*, *y* and *z* in the equation in (iv).

x = *y* = *z* =

[3]

2 A sample of a hydrated double salt, $Cu(NH_4)_x(SO_4)_2.6H_2O$, was boiled with an exce hydroxide. Ammonia was given off.

www.papaCambridge.com The ammonia produced was absorbed in 40.0 cm³ of 0.400 mol dm⁻³ hydrochloric acid. The re solution required 25 cm³ of 0.12 mol dm⁻³ sodium hydroxide to neutralize the excess acid.

(a) Write the ionic equation for the reaction between ammonium ions and hydroxide ions.

- (b) (i) Calculate the amount, in moles, of hydrochloric acid in 40.0 cm³ of 0.400 mol dm⁻³ solution.
 - (ii) Calculate the amount, in moles, of sodium hydroxide needed to neutralize the excess acid. This will be equal to the amount of hydrochloric acid left in excess.
 - (iii) Calculate the amount, in moles, of hydrochloric acid that reacted with ammonia.
 - (iv) Calculate the amount, in moles, of ammonium ions in the sample of the double salt.
- [1]
- (v) The sample contained 0.413 g of copper. Use this information and your answer to (iv) to calculate the value of x in $Cu(NH_4)_x(SO_4)_2.6H_2O$.

(vi) Calculate the M_r of Cu(NH₄)_x(SO₄)₂.6H₂O.

[2]

[Total: 8]

.....[1]

[1]

[1]

[1]

BLANK PAGE

5

 3 Nitrogen dioxide, NO2, can enter the atmosphere in a variety of ways.

 (a) (i) State one natural and one man-made source of atmospheric NO2.

 natural

 man-made

 [1]

 (ii) Write an equation to show how NO2 leads to the formation of nitric acid in acid rain.

 [1]

 (iii) Use equations to illustrate the catalytic role of NO2 in the formation of sulfuric acid in acid rain.

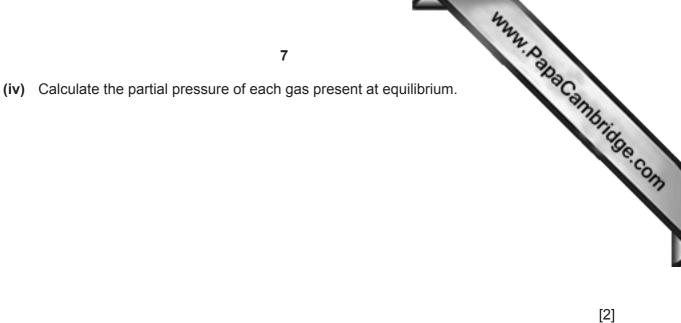
 [3]

 (b) Nitrogen dioxide exists in equilibrium with dinitrogen tetroxide, N2O4.

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

2.00 mol of dinitrogen tetroxide was sealed in a container at 350 K. After equilibrium had been established the total pressure was 140 kPa and the mixture of gases contained 1.84 mol of dinitrogen tetroxide.

(i) Give the expression for the equilibrium constant, $K_{\rm p}$, for this equilibrium.


[1]

(ii) Calculate the number of moles of NO₂ present at equilibrium.

[1]

[2]

(iii) Calculate the total number of moles of gas present at equilibrium and hence the mole fraction of each gas present at equilibrium.

(v) Calculate the value of the equilibrium constant, K_p , at 350 K. Give your answer to **three** significant figures and include the units.

	8 Nogens and their compounds have a wide variety of uses and the chemical ties of the elements show regular patterns related to their positions in Group VII. Norine, bromine and iodine all react with hydrogen.
proper	ties of the elements show regular patterns related to their positions in Group VII.
(a) Ch	lorine, bromine and iodine all react with hydrogen.
(i)	State the trend in the reactivities of the halogens with hydrogen.
(ii)	Explain this trend in terms of bond energies.
(,	
	[2]
(b) In	[2] the laboratory it is not very convenient to prepare hydrogen halides from their elements.
	the laboratory it is not very convenient to prepare hydrogen halides from their elements.
Ну	the laboratory it is not very convenient to prepare hydrogen halides from their elements. drogen halides can be prepared from their salts. Write an equation for the reaction of calcium chloride, $CaCl_2$, with concentrated sulfurio
Ну	the laboratory it is not very convenient to prepare hydrogen halides from their elements. drogen halides can be prepared from their salts. Write an equation for the reaction of calcium chloride, CaCl ₂ , with concentrated sulfurio acid.
Hy (i)	the laboratory it is not very convenient to prepare hydrogen halides from their elements. drogen halides can be prepared from their salts. Write an equation for the reaction of calcium chloride, CaCl ₂ , with concentrated sulfuric acid. [1] Explain why hydrogen iodide is not prepared in this way.
Hy (i)	 the laboratory it is not very convenient to prepare hydrogen halides from their elements. drogen halides can be prepared from their salts. Write an equation for the reaction of calcium chloride, CaCl₂, with concentrated sulfuric acid.

www.papaCambridge.com 9 (c) (i) Give the structures of the four structural isomers of C_4H_9Br and identify each secondary or tertiary. [4] (ii) Name the isomer of C_4H_9Br that contains a chiral center and draw the three-dimensional structures of the two optical isomers. name structures [3] (d) Aqueous silver nitrate solution was added to separate tubes containing chloroethane, bromoethane and iodoethane. The tubes were heated in a water bath. A yellow precipitate appeared first in the tube containing iodoethane, followed by a cream precipitate in the tube containing bromoethane and finally a white precipitate appeared in the tube containing chloroethane. Explain these observations.

www.papaCambridge.com 10 (e) (i) Give the full name of the mechanism for the reaction between aqueous sodi and bromoethane. (ii) Complete the diagram below to represent this mechanism. Include all necessary curl arrows, partial charges and lone pairs. Н Н н Н —OH + Br⁻ Н ·Br н HO-[2] (f) In the past, CFCs such as CF_3Cl were widely used as refrigerants. (i) State a property of CFCs which makes them suitable for use as refrigerants.[1] (ii) State the damaging effect of CFCs in the upper atmosphere. Explain your answer. [2] [Total: 24]

BLANK PAGE

11

BLANK PAGE

12

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.