| Centre Number | Candidate Number | Candidate Name | |---------------|------------------|----------------| | | | | | | | | #### NAMIBIA SENIOR SECONDARY CERTIFICATE ### PHYSICAL SCIENCE ORDINARY LEVEL 4323/2 PAPER 2 2 hours Marks 100 **2018** Additional Materials: Non-programmable calculator Ruler #### **INSTRUCTIONS AND INFORMATION TO CANDIDATES** - · Candidates answer on the Question Paper in the spaces provided. - Write your Centre Number, Candidate Number and Name in the spaces provided on top of this page. - · Write in dark blue or black pen. - You may use a soft pencil for any diagrams, graphs or rough working. - · Do not use correction fluid. - Do not write in the margin For Examiner's Use. - Answer all questions. - The number of marks is given in brackets [] at the end of each question or part question. - You will lose marks if you do not show your working or if you do not use appropriate units. - Take the weight of 1 kg to be 10 N (i.e acceleration of free fall g = 10 m/s²). - The Periodic Table is printed on page 17. | For Examiner's Use | | | | | | |--------------------|---|--|--|--|--| | 1 | | | | | | | 2 | | | | | | | 3 | | | | | | | 4 | | | | | | | 5 | | | | | | | 6 | | | | | | | 7 | | | | | | | 8 | | | | | | | 9 | | | | | | | 10 | | | | | | | 11 | | | | | | | Total | | | | | | | Marker | , | | | | | | Marker | | |---------|--| | Checker | | This document consists of 17 printed pages and 3 blank pages. Republic of Namibia MINISTRY OF EDUCATION, ARTS AND CULTURE **1** Fig. 1.1 shows the structures of atoms of aluminium and element **X**. Element **X** is unreactive. | | | Fig. 1.1 | | |-----|-------|--|-----| | (a) | (i) | Identify element X. | | | | | | [1] | | | (ii) | State the period number of aluminium and element X . | | | | | | [1] | | | (iii) | By referring to the structure, explain why element X is unreactive. | | | | | | | | | | | [1] | | (b) | Alur | minium reacts with chlorine to form aluminium chloride. | | | ` , | (i) | Write a balanced chemical equation for this reaction. | | | | | | [2] | | | (ii) | Describe how the chloride ion is formed from chlorine atom. | | | | | | [1] | | (c) | Des | scribe a test for aluminium ions. | | | | Tes | t | | | | | | | | | Res | sult | | | | | | [3] | | | | | [9] | **2** Two students have flu symptoms and take medicine to relieve the symptoms. Student **A** swallows a pill with water and student **B** uses an effervescent tablet that is to be dissolved in water. Each medicine has three active ingredients. The table in Fig. 2.1 shows the content of these ingredients in the two medicines. | active ingredients | mass of active ingredients in the pill/mg | mass of active ingredients in the effervescent tablet/mg | |--------------------|---|--| | asprin/mg | 226.8 | 453.6 | | paracetamol/mg | 162.0 | 324.0 | | caffeine/mg | 32.4 | 64.8 | Fig. 2.1 | (a) | State the number of pills student A should take to have the same effect as one effervescent tablet. | [1 | |-----|--|-----| | (b) | | L', | | | State the type of reaction that took place. | | | | | [1 | | (c) | In another occasion, student B dissolved the tablet in warm water. | | | | With reference to collision theory, state and explain the effect this has on the time it takes the tablet to dissolve. | [3 | | | | [5] | | | $Na_2CO_3 + 2HNO_3 \rightarrow 2NaNO_3 + H_2O + CO_2$ | |------------------|---| | a) St | ate why excess sodium carbonate is used in the experiment. | | | | |
b) So | odium nitrate salt produced in the reaction is in aqueous solution. | | (i) | Give the name of the anion of the sodium nitrate salt. | | (ii | Describe how dry crystals of sodium nitrate can be obtained from the mixture. | | | | | | | | | | | | | | | | | c) In | the reaction, a volume of 6 000 cm ³ of carbon dioxide gas was produced. | | c) In
(i) | the reaction, a volume of 6 000 cm³ of carbon dioxide gas was produced. Convert 6 000 cm³ to dm³ | | | Convert 6 000 cm³ to dm³ | | (i) | Convert 6 000 cm³ to dm³ | | (i)
(ii | Convert 6 000 cm³ to dm³ | | (i)
(ii | Convert 6 000 cm³ to dm³ | | (i)
(ii | Convert 6 000 cm³ to dm³ | | (i)
(ii) | Convert 6 000 cm³ to dm³ | | (i)
(ii) | Convert 6 000 cm³ to dm³ | | a) | State the name of an ore of lead. | |-----|--| | b) | State, with a reason, the method of extraction of iron from its ore. | | | Method | | | Reason | | | | | | | | (c) | Zinc is used to galvanise iron to prevent rusting. | | | (i) Describe how galvanising prevents iron from rusting. | | | | | | | | | | | | | | | (ii) State two other methods of rust prevention | | | (ii) State two other methods of rust prevention. | | | 1 | | | 2 | | | (iii) Zinc is also used in making alloys. | | | Explain how alloying affects the electrical conductivity of zinc. | - **5** Fig. 5.1 shows functional groups of different homologous series. - (a) Use Fig. 5.1 to match the molecules on the left with their functional groups on the right. The first one has been done for you. Fig. 5.1 [3] (b) Propane is found in the same homologous series as ethane. Draw the molecular structure of the propane molecule. [2] (c) Ethane undergoes a chemical reaction to form a polymer. (i) State the name given to this reaction. [1] (ii) Describe how polymers are formed. [2] [8] | aj | Writ | te the word equation for the decomposition of limestone. | |-----|------|--| | | | | | b) | Des | cribe two other ways carbon dioxide can be produced. | | | 1 | | | | 2 | | | (c) | Ехр | lain the importance of using lime in controlling soil acidity. | | | | | | | | | | (d) | | fertility of the soil can be improved by adding fertilisers. | | | (i) | State the advantage of fertilisers containing potassium. | | | | | | | (ii) | Explain the danger of overuse of fertilisers to aquatic life. | 7 The table in Fig. 7.1 shows how the speed of a drone changes with time as it flies in a straight line between two points. | speed/m/s | 0 | 20 | 40 | 60 | 80 | 80 | 80 | 100 | 120 | 90 | 60 | |------------------|---|----|----|----|----|----|----|-----|-----|----|----| | time/
seconds | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | | | Fig. 7.1 | | |--------------|--|-----| | (a) | Use the table in Fig. 7.1 to describe the motion of the drone from | | | | (i) $0-8$ seconds of the journey. | | | | | [1] | | | (ii) 8 – 12 seconds of the journey. | | | | | [4] | | / L \ | | [1] | | (D) | Calculate the acceleration of the drone in the last 4 seconds. | | | | Show your working. | Acceleration m/s ² | [3] | | | | | | (c) | 300 KJ of chemical energy is transferred into other forms of energy as | | | | the drone travels the first 8 s. | | | | (i) State one form of energy into which the chemical energy is transferred. | | | | | [1] | | | (ii) Convert 300 kilojoules into joules. | | | | | [1] | | | (iii) Calculate the newer developed by the drope | [1] | | | (iii) Calculate the power developed by the drone. | | | | Show your working. | PowerW | [2] | | | | | | (d) The total pressure exerted by all four area of each of the four tyres in contact Calculate | | | |--|-------------------------------|--------------------| | (i) the total contact area of the tyres. | | | | | | | | (ii) the force exerted by the four tyre | Area cm ² | [1] | | (ii) the force exerted by the four tyre | es of the car off the ground. | | | | | | | | | | | | ForceN | [2]
[12] | **8** Fig. 8.1 shows a solar hot water system. Fig. 8.1 | (a) | Name the main method by which heat is transferred from (i) the sun to the solar panel. | | |-----|---|-------------------| | | (ii) the water in the coil to the storage tank. | [1] | | (b) | With reference to density, explain why hot water leaves the storage tank from the top. | [1] | | | | | | (c) | Use the phrases in the list to complete the sentences. | [2] | | | white shiny white matt black silver | | | | The surface which is the | | | | (i) best absorber of radiation is | [1] | | | (ii) worst emitter of radiation is | [1] | | | (iii) best reflector of radiation is | [1]
[7] | **9** Fig. 9.1 shows a ray of light from the sun striking a triangular prism. Fig. 9.1 (a) (i) On Fig. 9.1 draw a normal line where the light ray strikes the prism. [1] (ii) Complete the diagram in Fig. 9.1 to show the path of light as it enters and leaves the triangular prism. [1] **(b)** When light rays from the triangular prism hits the screen, a continuous light spectrum is formed. Explain why this spectrum is formed. For Examiner's Use (c) Fig. 9.2 shows an object placed 5.0 cm from the centre C, of a convex lens which has focal length of 3.0 cm as shown in Fig. 9.2. Fig. 9.2 On Fig. 9.2 draw (i) **two** rays from the top of the object to locate the position of the image formed. [2] (ii) the image and label it I. [1] (d) The object is moved and placed 2.0 cm from the centre C, of the lens. State one property of the new image formed. [8] [1] For Examiner's Use 10 (a) Fig. 10.1 shows an insulated coiled wire (solenoid) connected to a cell. Fig. 10.1 A north pole of a permanent bar magnet is brought closer to the left hand side of the solenoid. State and explain the observation made. | Observation | | |-------------|-----| | Explanation | | | | | | | [2] | [2] (b) Fig. 10.2 shows a model of an a.c generator. Fig. 10.2 The coil of wire labelled w x y z is rotated in the direction shown and e.m.f. is induced in the coil. (i) On Fig. 10.2 draw arrows to indicate the direction of induced e.m.f. on side w-x and side y-z. [1] (ii) Explain why the e.m.f. is induced in the coil as the coil rotates between the poles of the magnet. [1] (iii) Identify the components labelled **R** and **Q** in Fig. 10.2. R Q (c) Fig. 10.3 shows a simple transformer. Fig. 10.3 | (i) | State the purpose of an iron core in a transformer. | | |------|--|-----| | | | [1] | | (ii) | Calculate the number of turns on the secondary coil. | | Number of turns[2] (iii) Calculate the current output of the secondary coil when there is a current of 0.25 A in the primary coil. Current A [2] | The | | shows the | | | | | | | | | |--|--|---|--|--|---|--|-----------|----------------------|----------|---------------| | | ²³⁸ ₉₂ J | | ²²² ₉₀ L | 2 | ²³⁹ M | | | | | | | (a) Identify two nuclides which are isotopes of the same element. | | | | | | | | | | | | | 1 | | | | | | | | | | | | 2 | | | | | | | | | | | b) | Radioactive atom L is thorium. | | | | | | | | | | | | (i) State the number of protons in a nucleus of thorium. | | | | | | | | | | | | (ii) Thorium decays by emitting beta particles. | | | | | | | | | | | | Complete the word equation when thorium decays by emitting two beta particles. | | | | | | | | | | | | | Thorium - | | | 4 | two be | eta parti | cles | | | | Thorium → + two beta particles (c) A Grade 12 student investigates the radioactivity of material L. | | | | | | | | | | | | C) | (i) Define the term <i>half-life</i> . | | | | | | | | | | | (c) | (i) | Define the | | • | | | | | | | | (c) | (i) | The stude the GM-tul The table in The backg | term <i>half-l</i> nt placed a be. n Fig. 11.1 | life. | e of mate | erial L a | few ce | | |
 | | (c) | | The stude
the GM-tul
The table i
The backg | term <i>half-l</i> nt placed a be. n Fig. 11.1 | shows to a sample | e of mate
he results
74 Bq w | erial L a
s obtain
vas dete | ed every | y hour f | or 5 hou |

 | | (c) | | The stude
the GM-tul
The table i
The backg
Time/hour
Activity/Bq | nt placed abe. In Fig. 11.1 | a sample shows to | e of mate
he results | erial L a
s obtain
as dete | ed every | y hour f | or 5 hou |

 | | c) | | The stude
the GM-tul
The table i
The backg | nt placed abe. In Fig. 11.1 | shows to a sample of the sample of the shows to a sample of the shows to a sample of the sampl | e of mate
he results
74 Bq w
1
1690 | erial L a
s obtain
vas dete | ed every | y hour f | or 5 hou |
Irs. | | c) | | The stude
the GM-tul
The table i
The backg
Time/hour
Activity/Bq
Correct act | nt placed abe. n Fig. 11.1 pround radi | shows to a sample of the sample of the shows to a sample of the o | e of mate he results 74 Bq w 1 1690 | erial L as obtain as dete | ed every | y hour f
4
882 | 5
715 |
Irs. | | c) | | The stude
the GM-tul
The table i
The backg
Time/hour
Activity/Bq | nt placed abe. n Fig. 11.1 pround radi | shows to a sample of the shows to a sample of the shows to a show the shows | e of mate he results 74 Bq w 1 1690 | erial L a
s obtain
vas dete | ed every | y hour f
4
882 | 5
715 |
.rs. | | c) | (ii) | The studed the GM-tuled The table in The backger Time/hour Activity/Bq Correct act | nt placed abe. n Fig. 11.1 round radi | shows to a sample of shows to show the shows to show the show that is a | e of mate he results 74 Bq w 1 1690 Fig. 11.1 the corre | erial L a
s obtain
vas dete | ed every | y hour f
4
882 | 5
715 |
.rs. | | c) | (ii) | The stude the GM-tul The table in The backg Time/hour Activity/Bq Correct act Complete after each | nt placed abe. n Fig. 11.1 round radi | shows to a sample of shows to show the shows to show the show that is a | e of mate he results 74 Bq w 1 1690 Fig. 11.1 the corre | erial L a
s obtain
vas dete | ed every | y hour f
4
882 | 5
715 |
Irs. | | (c) | (ii) | The stude the GM-tul The table in The backg Time/hour Activity/Bq Correct act Complete after each | nt placed abe. n Fig. 11.1 round radi | shows to a sample of shows to show the shows to show the show that is a | e of mate he results 74 Bq w 1 1690 Fig. 11.1 the corre | erial L a
s obtain
vas dete | ed every | y hour f
4
882 | 5
715 |
Irs. | | | | 0 | 4 Helium | 20
Neon
10
40
Ar
Argon | 84 | Kr
Krypton
36 | 131
Xe
Xenon
54 | Radon 86 | | 175
Lu
Lutetium
71 | Lr
Lawrencium
103 | | | | | | | | | | |--|-------|-----|------------------------|--|---------------------------|------------------------------|-------------------------------------|------------------------------------|--------------------------------------|---|---|-----------------------------------|-----------------------------|----|----------------------------|------------------------------------|-----------------------------------|--|----------------------------------|-----------------------------| | | | IIA | | 19 Fluorine 9 35,5 C. Chlorine 17 | 08 | Br
Bromine
35 | 127 I lodine 53 | At
Astatine
85 | | 173 Yb Ytterbium 70 | Nobelium
102 | | | | | | | | | | | | | I | | 16
Oxygen
8
32
S
Sulfur
16 | 79 | Se
Selenium
34 | 128
Te
Tellurium
52 | Po
Polonium
84 | | 169
Tm
Thulium
69 | Md
Mendelevium
101 | | | | | | | | | | | | | ۸ | | | | | | | | | | | Nitrogen 7 31 Phosphorus 15 | 75 | As
Arsenic
33 | 122
Sb
Antimony
51 | 209
Bi
Bismuth
83 | | 167
Er
Erbium
68 | Fm
Fermium
100 | | | | N | | | 12 Carbon 6 Si Silicon 14 | 73 | Ge
Germanium
32 | 119
Sn
Tin | 207
Pb
Lead
82 | | 165
Ho
Holmium
67 | Es
Einsteinium
99 | | | | | | | | | | | | = | | 11
B Boron 5 27 AI Aluminium 13 | 02 | Ga
Gallium
31 | 115
In
Indium
49 | 204 T/ Thallium 81 | | 162
Dy
Dysprosium
66 | Cf
Californium
98 | | | | | | | | | | | | | | | | 9 | Zn
Zinc
30 | 112
Cd
Cadmium
48 | 201
Hg
Mercury
80 | | 159
Tb
Terbium
65 | Bk
Berkelium
97 | | | | | | | | | | | nents | | | | | 64 | Copper 29 | 108
Ag
Silver
47 | 197
Au
Gold
79 | | 157
Gd
Gadolinium
64 | Cm
Curium
96 | | | | | | | | | | | DATA SHEET
The Periodic Table of the Elements | Group | | | | 69 | Ni
Nickel
28 | 106
Pd
Palladium
46 | 195
Pt
Platinum
78 | | 152
Eu
Europium
63 | Am
Americium
95 | | | | | | | | | | | DATA
e Periodic Tal | 9 | | | - | 59 | Co
Cobalt
27 | 103
Rh
Rhodium
45 | 192
Ir
Iridium
77 | | 150
Sm
Samarium
62 | Pu
Plutonium
94 | | | | | | | | | | | £ | | | 1 H
Hydrogen | | 99 | Fe
Iron
26 | 101
Ru
Ruthenium
44 | 190
Os
Osmium
76 | | Pm
Promethium
61 | Neptunium
93 | | | | | | | | | | | | | | | - | 55 | Mn
Manganese
25 | Tc
Technetium
43 | 186
Re
Rhenium
75 | | Neodymium
60 | 238
U
Uranium
92 | | | | | | | | | | | | | | | | 52 | Cr
Chromium
24 | 96
Mo
Molybdenum
42 | 184
W
Tungsten
74 | | 141
Pr
Praseodymium
59 | Pa
Protactinium
91 | | | | | | | | | | | | | | | | | 51 | V
Vanadium
23 | 93
Nb
Niobium
41 | 181
Ta
Tantalum
73 | | 140
Ce
Cerium
58 | 232
Th
Thorium
90 | | | | | | | | | | | | | | | 48 | Ti
Titanium
22 | 91
Zr
Zirconium
40 | 178
Hf
Hafnium
72 | | 1 | a = relative atomic mass X = atomic symbol b = proton (atomic) number | | | | | | | | | | | | | | | | | Scandium
21 | 89
Y
Yttrium
39 | 139 La
Lanthanum
57 * | 227
Ac
Actinium
89 † | s s | a = relative atomic mass X = atomic symbol b = proton (atomic) numbe | | | | | | | | | | | | | = | | Beryllium 4 24 Magnesium 12 | 40 | Ca
Calcium
20 | 88
Sr
Strontium
38 | 137
Ba
Barium
56 | 226
Ra
Radium
88 | *58 - 71 Lanthanoid series
†90 - 103 Actinoid series | а Х | | | | | | | | | | | | | - | | 7 Lithium 3 23 Na Sodium 11 | 39 | K
Potassium
19 | 85
Rb
Rubidium
37 | 133
Cs
Caesium
55 | Fr
Francium
87 | *58 - 71 La
†90 - 103 A | Key | | | | | | | | | | The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.). # **BLANK PAGE** ### **BLANK PAGE** # **BLANK PAGE**