Centre Number	Candidate Number	Candidate Name

NAMIBIA SENIOR SECONDARY CERTIFICATE

PHYSICAL SCIENCE ORDINARY LEVEL

4323/2

PAPER 2 2 hours

Marks 100 **2018**

Additional Materials: Non-programmable calculator

Ruler

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- · Candidates answer on the Question Paper in the spaces provided.
- Write your Centre Number, Candidate Number and Name in the spaces provided on top of this page.
- · Write in dark blue or black pen.
- You may use a soft pencil for any diagrams, graphs or rough working.
- · Do not use correction fluid.
- Do not write in the margin For Examiner's Use.
- Answer all questions.
- The number of marks is given in brackets [] at the end of each question or part question.
- You will lose marks if you do not show your working or if you do not use appropriate units.
- Take the weight of 1 kg to be 10 N (i.e acceleration of free fall g = 10 m/s²).
- The Periodic Table is printed on page 17.

For Examiner's Use					
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
Total					
Marker	,				

Marker	
Checker	

This document consists of 17 printed pages and 3 blank pages.

Republic of Namibia
MINISTRY OF EDUCATION, ARTS AND CULTURE

1 Fig. 1.1 shows the structures of atoms of aluminium and element **X**. Element **X** is unreactive.

		Fig. 1.1	
(a)	(i)	Identify element X.	
			[1]
	(ii)	State the period number of aluminium and element X .	
			[1]
	(iii)	By referring to the structure, explain why element X is unreactive.	
			[1]
(b)	Alur	minium reacts with chlorine to form aluminium chloride.	
` ,	(i)	Write a balanced chemical equation for this reaction.	
			[2]
	(ii)	Describe how the chloride ion is formed from chlorine atom.	
			[1]
(c)	Des	scribe a test for aluminium ions.	
	Tes	t	
	Res	sult	
			[3]
			[9]

2 Two students have flu symptoms and take medicine to relieve the symptoms. Student **A** swallows a pill with water and student **B** uses an effervescent tablet that is to be dissolved in water. Each medicine has three active ingredients. The table in Fig. 2.1 shows the content of these ingredients in the two medicines.

active ingredients	mass of active ingredients in the pill/mg	mass of active ingredients in the effervescent tablet/mg
asprin/mg	226.8	453.6
paracetamol/mg	162.0	324.0
caffeine/mg	32.4	64.8

Fig. 2.1

(a)	State the number of pills student A should take to have the same effect as one effervescent tablet.	[1
(b)		L',
	State the type of reaction that took place.	
		[1
(c)	In another occasion, student B dissolved the tablet in warm water.	
	With reference to collision theory, state and explain the effect this has on the time it takes the tablet to dissolve.	
		[3
		[5]

	$Na_2CO_3 + 2HNO_3 \rightarrow 2NaNO_3 + H_2O + CO_2$
a) St	ate why excess sodium carbonate is used in the experiment.
 b) So	odium nitrate salt produced in the reaction is in aqueous solution.
(i)	Give the name of the anion of the sodium nitrate salt.
(ii	Describe how dry crystals of sodium nitrate can be obtained from the mixture.
c) In	the reaction, a volume of 6 000 cm ³ of carbon dioxide gas was produced.
c) In (i)	the reaction, a volume of 6 000 cm³ of carbon dioxide gas was produced. Convert 6 000 cm³ to dm³
	Convert 6 000 cm³ to dm³
(i)	Convert 6 000 cm³ to dm³
(i) (ii	Convert 6 000 cm³ to dm³
(i) (ii	Convert 6 000 cm³ to dm³
(i) (ii	Convert 6 000 cm³ to dm³
(i) (ii)	Convert 6 000 cm³ to dm³
(i) (ii)	Convert 6 000 cm³ to dm³

a)	State the name of an ore of lead.
b)	State, with a reason, the method of extraction of iron from its ore.
	Method
	Reason
(c)	Zinc is used to galvanise iron to prevent rusting.
	(i) Describe how galvanising prevents iron from rusting.
	(ii) State two other methods of rust prevention
	(ii) State two other methods of rust prevention.
	1
	2
	(iii) Zinc is also used in making alloys.
	Explain how alloying affects the electrical conductivity of zinc.

- **5** Fig. 5.1 shows functional groups of different homologous series.
 - (a) Use Fig. 5.1 to match the molecules on the left with their functional groups on the right.

The first one has been done for you.

Fig. 5.1

[3]

(b) Propane is found in the same homologous series as ethane.

Draw the molecular structure of the propane molecule.

[2]

(c) Ethane undergoes a chemical reaction to form a polymer.

(i) State the name given to this reaction.

[1]

(ii) Describe how polymers are formed.

.....

[2]

[8]

aj	Writ	te the word equation for the decomposition of limestone.
b)	Des	cribe two other ways carbon dioxide can be produced.
	1	
	2	
(c)	Ехр	lain the importance of using lime in controlling soil acidity.
(d)		fertility of the soil can be improved by adding fertilisers.
	(i)	State the advantage of fertilisers containing potassium.
	(ii)	Explain the danger of overuse of fertilisers to aquatic life.

7 The table in Fig. 7.1 shows how the speed of a drone changes with time as it flies in a straight line between two points.

speed/m/s	0	20	40	60	80	80	80	100	120	90	60
time/ seconds	0	2	4	6	8	10	12	14	16	18	20

	Fig. 7.1	
(a)	Use the table in Fig. 7.1 to describe the motion of the drone from	
	(i) $0-8$ seconds of the journey.	
		[1]
	(ii) 8 – 12 seconds of the journey.	
		[4]
/ L \		[1]
(D)	Calculate the acceleration of the drone in the last 4 seconds.	
	Show your working.	
	Acceleration m/s ²	[3]
(c)	300 KJ of chemical energy is transferred into other forms of energy as	
	the drone travels the first 8 s.	
	(i) State one form of energy into which the chemical energy is transferred.	
		[1]
	(ii) Convert 300 kilojoules into joules.	
		[1]
	(iii) Calculate the newer developed by the drope	[1]
	(iii) Calculate the power developed by the drone.	
	Show your working.	
	PowerW	[2]

(d) The total pressure exerted by all four area of each of the four tyres in contact Calculate		
(i) the total contact area of the tyres.		
(ii) the force exerted by the four tyre	Area cm ²	[1]
(ii) the force exerted by the four tyre	es of the car off the ground.	
	ForceN	[2] [12]

8 Fig. 8.1 shows a solar hot water system.

Fig. 8.1

(a)	Name the main method by which heat is transferred from (i) the sun to the solar panel.	
	(ii) the water in the coil to the storage tank.	[1]
(b)	With reference to density, explain why hot water leaves the storage tank from the top.	[1]
(c)	Use the phrases in the list to complete the sentences.	[2]
	white shiny white matt black silver	
	The surface which is the	
	(i) best absorber of radiation is	[1]
	(ii) worst emitter of radiation is	[1]
	(iii) best reflector of radiation is	[1] [7]

9 Fig. 9.1 shows a ray of light from the sun striking a triangular prism.

Fig. 9.1

(a) (i) On Fig. 9.1 draw a normal line where the light ray strikes the prism.

[1]

(ii) Complete the diagram in Fig. 9.1 to show the path of light as it enters and leaves the triangular prism.

[1]

(b) When light rays from the triangular prism hits the screen, a continuous light spectrum is formed.

Explain why this spectrum is formed.

For Examiner's Use

(c) Fig. 9.2 shows an object placed 5.0 cm from the centre C, of a convex lens which has focal length of 3.0 cm as shown in Fig. 9.2.

Fig. 9.2

On Fig. 9.2 draw

(i) **two** rays from the top of the object to locate the position of the image formed.

[2]

(ii) the image and label it I.

[1]

(d) The object is moved and placed 2.0 cm from the centre C, of the lens.

State one property of the new image formed.

.....

[8]

[1]

For Examiner's Use

10 (a) Fig. 10.1 shows an insulated coiled wire (solenoid) connected to a cell.

Fig. 10.1

A north pole of a permanent bar magnet is brought closer to the left hand side of the solenoid.

State and explain the observation made.

Observation	
Explanation	
	[2]

[2]

(b) Fig. 10.2 shows a model of an a.c generator.

Fig. 10.2

The coil of wire labelled w x y z is rotated in the direction shown and e.m.f. is induced in the coil.

(i) On Fig. 10.2 draw arrows to indicate the direction of induced e.m.f. on side w-x and side y-z. [1] (ii) Explain why the e.m.f. is induced in the coil as the coil rotates between the poles of the magnet. [1] (iii) Identify the components labelled **R** and **Q** in Fig. 10.2. R

Q

(c) Fig. 10.3 shows a simple transformer.

Fig. 10.3

(i)	State the purpose of an iron core in a transformer.	
		[1]
(ii)	Calculate the number of turns on the secondary coil.	

Number of turns[2]

(iii) Calculate the current output of the secondary coil when there is a current of 0.25 A in the primary coil.

Current A [2]

The		shows the								
	²³⁸ ₉₂ J		²²² ₉₀ L	2	²³⁹ M					
(a) Identify two nuclides which are isotopes of the same element.										
	1									
	2									
b)	Radioactive atom L is thorium.									
	(i) State the number of protons in a nucleus of thorium.									
	(ii) Thorium decays by emitting beta particles.									
	Complete the word equation when thorium decays by emitting two beta particles.									
		Thorium -			4	two be	eta parti	cles		
Thorium → + two beta particles (c) A Grade 12 student investigates the radioactivity of material L.										
C)	(i) Define the term <i>half-life</i> .									
(c)	(i)	Define the		•						
(c)	(i)	The stude the GM-tul The table in The backg	term <i>half-l</i> nt placed a be. n Fig. 11.1	life.	e of mate	erial L a	few ce			
(c)		The stude the GM-tul The table i The backg	term <i>half-l</i> nt placed a be. n Fig. 11.1	shows to a sample	e of mate he results 74 Bq w	erial L a s obtain vas dete	ed every	y hour f	or 5 hou	
(c)		The stude the GM-tul The table i The backg Time/hour Activity/Bq	nt placed abe. In Fig. 11.1	a sample shows to	e of mate he results	erial L a s obtain as dete	ed every	y hour f	or 5 hou	
c)		The stude the GM-tul The table i The backg	nt placed abe. In Fig. 11.1	shows to a sample of the sample of the shows to a sample of the shows to a sample of the sampl	e of mate he results 74 Bq w 1 1690	erial L a s obtain vas dete	ed every	y hour f	or 5 hou	 Irs.
c)		The stude the GM-tul The table i The backg Time/hour Activity/Bq Correct act	nt placed abe. n Fig. 11.1 pround radi	shows to a sample of the sample of the shows to a sample of the sample o	e of mate he results 74 Bq w 1 1690	erial L as obtain as dete	ed every	y hour f 4 882	5 715	 Irs.
c)		The stude the GM-tul The table i The backg Time/hour Activity/Bq	nt placed abe. n Fig. 11.1 pround radi	shows to a sample of the shows to a sample of the shows to a show the shows	e of mate he results 74 Bq w 1 1690	erial L a s obtain vas dete	ed every	y hour f 4 882	5 715	 .rs.
c)	(ii)	The studed the GM-tuled The table in The backger Time/hour Activity/Bq Correct act	nt placed abe. n Fig. 11.1 round radi	shows to a sample of shows to show the shows to show the show that is a show that	e of mate he results 74 Bq w 1 1690 Fig. 11.1 the corre	erial L a s obtain vas dete	ed every	y hour f 4 882	5 715	 .rs.
c)	(ii)	The stude the GM-tul The table in The backg Time/hour Activity/Bq Correct act Complete after each	nt placed abe. n Fig. 11.1 round radi	shows to a sample of shows to show the shows to show the show that is a show that	e of mate he results 74 Bq w 1 1690 Fig. 11.1 the corre	erial L a s obtain vas dete	ed every	y hour f 4 882	5 715	 Irs.
(c)	(ii)	The stude the GM-tul The table in The backg Time/hour Activity/Bq Correct act Complete after each	nt placed abe. n Fig. 11.1 round radi	shows to a sample of shows to show the shows to show the show that is a show that	e of mate he results 74 Bq w 1 1690 Fig. 11.1 the corre	erial L a s obtain vas dete	ed every	y hour f 4 882	5 715	 Irs.

		0	4 Helium	20 Neon 10 40 Ar Argon	84	Kr Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103									
		IIA		19 Fluorine 9 35,5 C. Chlorine 17	08	Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102									
		I		16 Oxygen 8 32 S Sulfur 16	79	Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101									
		۸											Nitrogen 7 31 Phosphorus 15	75	As Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
		N			12 Carbon 6 Si Silicon 14	73	Ge Germanium 32	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	Es Einsteinium 99								
		=		11 B Boron 5 27 AI Aluminium 13	02	Ga Gallium 31	115 In Indium 49	204 T/ Thallium 81		162 Dy Dysprosium 66	Cf Californium 98									
					9	Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	Bk Berkelium 97									
nents					64	Copper 29	108 Ag Silver 47	197 Au Gold 79		157 Gd Gadolinium 64	Cm Curium 96									
DATA SHEET The Periodic Table of the Elements	Group				69	Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95									
DATA e Periodic Tal	9			-	59	Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77		150 Sm Samarium 62	Pu Plutonium 94									
£			1 H Hydrogen		99	Fe Iron 26	101 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium 93									
				-	55	Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92									
					52	Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91									
						51	V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium 90								
					48	Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72		1	a = relative atomic mass X = atomic symbol b = proton (atomic) number									
						Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 *	227 Ac Actinium 89 †	s s	a = relative atomic mass X = atomic symbol b = proton (atomic) numbe									
		=		Beryllium 4 24 Magnesium 12	40	Ca Calcium 20	88 Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88	*58 - 71 Lanthanoid series †90 - 103 Actinoid series	а Х									
		-		7 Lithium 3 23 Na Sodium 11	39	K Potassium 19	85 Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58 - 71 La †90 - 103 A	Key									

The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.).

BLANK PAGE

BLANK PAGE

BLANK PAGE