For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Complex Numbers

Question Paper

Level	Pre U		
Subject	Maths		
Exam Board	Cambridge International Examinations		
Topic	Complex Numbers		
Booklet	Question Paper		

Time Allowed: 71 minutes

Score: /59

Percentage: /100

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1	The complex number $3 - 4i$ is denoted by z. how you obtain them, find	Giving your answers	in the fo	form $x + iy$,	and showing	clearly
---	--	---------------------	-----------	-----------------	-------------	---------

(i)
$$2z + z^*$$
, [2]

(ii)
$$\frac{5}{z}$$
. [2]

- (iii) Show z and z^* on an Argand diagram. [2]
- A root of the equation $z^2 + pz + q = 0$ is 3 + i, where p and q are real. Write down the other root of the equation and hence calculate the values of p and q. [4]
- 3 (i) Express $z^4 + 3z^2 4$ in the form $(z^2 + a)(z^2 + b)$ where a and b are real constants to be found. [2]
 - (ii) Hence draw an Argand diagram showing the points that represent the roots of the equation $z^4 + 3z^2 4 = 0$. [2]
- 4 The complex number z is given by -20 + 21i. Showing all your working,

(i) find the value of
$$|z|$$
, [2]

- (ii) calculate the value of $\arg z$ correct to 3 significant figures, [2]
- (iii) express $\frac{1}{z}$ in the form x + iy, where x and y are real numbers. [2]
- 5 (i) Verify that z = -1 is a root of the equation $z^3 + 5z^2 + 9z + 5 = 0$. [1]
 - (ii) Find the two complex roots of the equation $z^3 + 5z^2 + 9z + 5 = 0$. [4]
 - (iii) Show all three roots on an Argand diagram. [1]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- 6 The roots of the equation $z^2 6z + 10 = 0$ are z_1 and z_2 , where $z_1 = 3 + i$.
 - (i) Write down the value of z_2 . [1]
 - (ii) Show z_1 and z_2 on an Argand diagram. [2]
 - (iii) Show that $z_1^2 = 8 + 6i$. [2]
- 7 (a) The complex number z is such that |z| = 2 and arg z = -2 π . Find the exact value of the real part of z and of the imaginary part of z. [2]
 - (b) The complex numbers u and v are such that

$$u = 1 + ia$$
 and $v = b - i$,

where a and b are real and a < b. Given that uv = 7 + 9i, find the values of a and b. [7]

8 (a) Solve the equation

$$(2+i)z = (4+in).$$

Give your answer in the form a + ib, expressing a and b in terms of the real constant n. [4]

- **(b)** The roots of the equation $z^2 + 8z + 25 = 0$ are denoted by z_1 and z_2 .
 - (i) Find z_1 and z_2 and show these roots on an Argand diagram. [3]
 - (ii) Find the modulus and argument in radians of each of $(z_1 + 1)$ and $(z_2 + 1)$. [3]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

It is given that

$$y = \frac{1}{x+i} + \frac{1}{x-i},$$

where x and y are real and positive, and $i^2 = -1$.

(i) Show that

$$x = \frac{1 \pm \sqrt{1 - y^2}}{y} \quad \text{and} \quad y \le 1.$$
 [4]

(ii) Deduce that

$$xy < 2. [2]$$

(iii) Indicate the region in the x-y plane defined by

$$y \le 1$$
 and $xy < 2$. [3]