Acids and Bases ## **Question Paper** | Level | Pre U | |------------|--------------------------------------| | Subject | Chemistry | | Exam Board | Cambridge International Examinations | | Topic | Acids and Bases- Equilibria | | Booklet | Question Paper | Time Allowed: 18 minutes Score: /15 Percentage: /100 **Grade Boundaries:** ## Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | 1. | Ма | gnesium powder is used to generate heat for battlefield soldiers wanting a hot drink. | |----|-----|--| | | 9.0 | g of magnesium powder is added to 30.0 g, an excess, of water. | | | | $Mg + 2H_2O \longrightarrow Mg(OH)_2 + H_2$ | | | (a) | Calculate the amount, in mol, of magnesium. | | | | mol [1] | | | (b) | Calculate the mass of water that is in excess. | | | | | | | | g [2] | | | (c) | Calculate the volume of hydrogen gas, in dm ³ , produced at room temperature and pressure. | | | | | | | | dm ³ [1] | | | (d) | Use the standard enthalpy change of formation data in Table 1.1 to calculate the standard enthalpy change of reaction for magnesium reacting with water. | | | | | Table 1.1 | substance | Δ _f H ^o / kJ mol ^{–1} | |---------------------|--| | H ₂ O | -285.8 | | Mg(OH) ₂ | -924.5 | |
kJ mol ⁻¹ | [2] | |--------------------------|-----| ## **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | | | culate the heat energy, in kJ, released when 9.0 g of magnesium powder is added to 0 g of water. | |-----|------------|---| | | | kJ [1] | | (f) | hea
Cal | en the magnesium powder and water are mixed, the temperature of the drink being ted can rise to 60°C in about 10 minutes. culate how much energy, in kJ, is required to heat 150g of the drink from 15°C to C. Assume that the specific heat capacity of the drink is 4.2Jg ⁻¹ K ⁻¹ . | | (g) | | would using 9.0 g of magnesium granules affect the amount of energy released the temperature reached of the drink? Explain your answer. | | | | ro1 | | (h) | Evo | thermic reactions that do not produce hydrogen gas are being explored | | (h) | Exc | thermic reactions that do not produce hydrogen gas are being explored. | | (h) | Exc
(i) | | | (h) | | thermic reactions that do not produce hydrogen gas are being explored. One example is mixing calcium oxide with water. Write an equation for this reaction | | (h) | | thermic reactions that do not produce hydrogen gas are being explored. One example is mixing calcium oxide with water. Write an equation for this reaction and give the approximate pH of the resulting solution. | | (h) | (i) | thermic reactions that do not produce hydrogen gas are being explored. One example is mixing calcium oxide with water. Write an equation for this reaction and give the approximate pH of the resulting solution. pH | | | (i) | thermic reactions that do not produce hydrogen gas are being explored. One example is mixing calcium oxide with water. Write an equation for this reaction and give the approximate pH of the resulting solution. pH | [Total: 15]