Circulatory system ### **Question Paper** | Level | Pre U | |------------|--------------------------------------| | Subject | Biology | | Exam Board | Cambridge International Examinations | | Topic | Animal physiology | | Sub Topic | Circulatory system | | Booklet | Question Paper | Time Allowed: 87 minutes Score: /72 Percentage: /100 #### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ #### Part - B Table 2.1 presents the results of an experiment comparing rates of glucose production by a group of people with type 2 diabetes and a control group without the condition, during 23 hours of fasting. Table 2.1 | | rate of glucose product | oi mai G | | |--|-------------------------------|---------------|--------------------| | | patients with type 2 diabetes | control group | significance level | | total glucose production | 11.1±0.6 | 8.9±0.5 | p<0.05 | | glucose from
hydrolysis of
glycogen in the liver | 1.3±0.2 | 2.8±0.7 | p<0.05 | | glucose from
gluconeogenesis | 9.8±0.7 | 6.1±0.5 | p<0.01 | | (a) | Discuss the conclusions which can be drawn from the data in Table 2.1. | |-----|--| IC. | |) | In individuals without diabetes, the blood glucose concentration in the renal vein is callightly lower than in the renal artery. | only | |---|--|-------| | | Explain why one might expect the glucose concentration of the blood in the renal vein to much lower than in the renal artery and suggest why, in fact, the concentrations are alm identical. | | | | | | | | | | | | | ••••• | [4] | | | | Γ.1 | [Total: 10] Why do people get heart disease and what should be done about it? | Your
readi | r answer should draw from a ling around the subject. | a wide range c | of syllabus ma | terial and also | demonstrate ev | idence of
[30] | |---------------|--|----------------|----------------|-----------------|----------------|-------------------|
 | |------| | ••• | |
 | | ••• | | ••• |
 | | | | | | | | | | | | | |
 | |------| | ••• | |
 | | ••• | | ••• |
 | | | | | | | | | | | | | |
 | |------| | ••• | |
 | | ••• | | ••• |
 | | | | | | | | | | | | | #### **Save My Exams! - The Home of Revision** For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ A large scale international study was carried out into the effectiveness of a type of statin in reducing the risk of major cardiovascular events, including stroke. The people taking part in the study were given either the statin or a placebo (a pill with no statin). The percentage of those who subsequently had a stroke or other major cardiovascular event was recorded. The results are shown in Table 1.1. Table 1.1 | | percentage of people having
a stroke or other major
cardiovascular event | | significance | |---|--|--------|--------------| | | placebo | statin | | | stroke | 6 | 4 | p <0.05 | | other major
cardiovascular
events | 25 | 20 | p <0.05 | | (a) | Explain how statins are thought to reduce the risk of cardiovascular disease. | | |-----|---|--| | | | | | | | | | | | | | (b) | Explain the importance of using a placebo in this study. | Discuss any conclusions that may be drawn from this study. | |--| | | | | | | | | | | | [3] | | [Total: 8] | Fig. 4.1 shows a vertical section through the human heart. The structures labelled \mathbf{X} , \mathbf{Y} and \mathbf{Z} are each involved with an aspect of the control and coordination of the heart beat. Fig. 4.1 | (a) | Name the structures labelled Y and Z . | | |-----|---|-----| | | Υ | | | | z | | | | | [2] | | (b) | Structure X is often referred to as the 'pacemaker'. Explain why it is so called describing the role it takes in controlling heart beat. | by | [3] | #### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | (c) | Explain the role of structure Y in the control and coordination of the heart beat. | |-----|---| [3] | (d) The electrical activity of heart muscle can be recorded using electrodes placed at various positions on a person's body. The resulting trace is called an electrocardiogram (ECG) and is a useful diagnostic tool in assessing the functioning of the heart. On an ECG - P corresponds to the atria filling and then contracting, - QRS corresponds to the ventricles contracting, - T corresponds to the recovery phase. Fig. 4.2 shows ECGs for two people. Fig. 4.2 | (i) | Person A in Fig. 4.2 has a normal ECG. Calculate the heart rate from this ECG. | |------|---| | | Show your working. | | | | | | | | | | | | Answer =[2] | | (ii) | Suggest the likely effects on the control and coordination of heart beat of person B , indicated by the ECG shown in Fig. 4.2. | [4] | | | [Total: 14] | Fig. 3.1 shows diagrams of the circulatory systems of three groups of vertebrate: fish, 5 amphibians and mammals. Fig. 3.1 | State tillee ways in which the circulatory systems shown in Fig. 3.1 are similar. | |---| | 1 | | | | | | 2 | | | | | | 3 | | | | [3 | | (b) | State and explain the advantages to a mammal of the circulatory system shown in Fig. 3.1 in comparison to the circulatory systems of fish and amphibians. | |-----|--| [7] | [Total: 10]