Centre Number	Candidate Number	Candidate Name

NAMIBIA SENIOR SECONDARY CERTIFICATE

PHYSICAL SCIENCE HIGHER LEVEL

8322/1

PAPER 1 1 hour 30 minutes

Marks 70 **2017**

Additional materials: Ruler

Non-programmable calculator

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- Candidates answer on the Question Paper on the spaces provided.
- · Write your Centre Number, Candidate Number and Name in the spaces at the top of this page.
- Write in dark blue or black pen.
- You may use a soft pencil for any rough work, diagrams or graphs.
- · Do not use correction fluid.
- Do not write in the margin For Examiner's Use.
- Answer all questions.
- The number of marks is given in brackets [] at the end of each question or part question.
- You will lose marks if you do not show your working or if you do not use appropriate units.
- Take the weight of 1 kg to be 10 N (i.e acceleration of free fall $g = 10 \text{ m/s}^2$).
- The Periodic Table is printed on page 11.

For Exan	niner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

Marker	
Checker	

This document consists of 11 printed pages and 1 blank page.

Republic of Namibia
MINISTRY OF EDUCATION, ARTS AND CULTURE

1 The motion of a hot air balloon during the interval **A** to **D** after it began to rise from the ground is shown in Fig. 1.1.

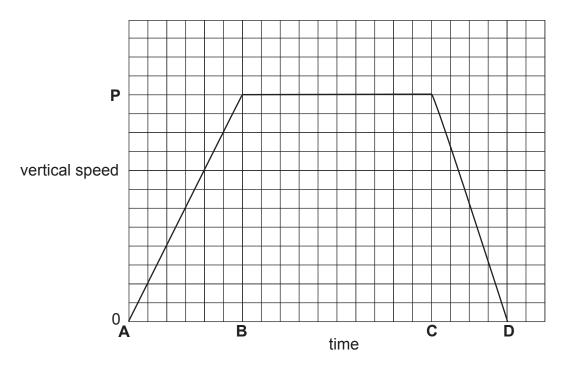


Fig. 1.1

(i) dur	ing the	interval	A	to	В.
---------	---------	----------	---	----	----

[1]

(ii) during the interval B to C.

.....[1]

(iii) at point **D**.

.....[1]

(b) In terms of A, B, C, D and P, give the expression of the total distance covered during the time interval A to D.

Answer

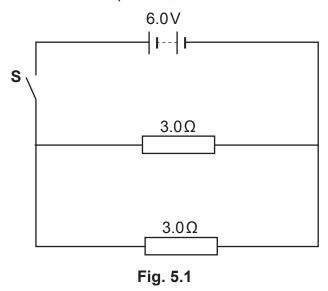
(c)	a m gro	When the balloon was stationary at a height of 30m above the ground, a metal ball was dropped. The ball accelerated constantly as it fell to the ground. An observer recorded that it took 3.0s for the ball to reach the ground. Calculate					
	(i)	the average speed of the ball as it fell.					
	(ii)	Average speedm/s the maximum speed of the ball before it hits the ground.	[2]				
	(iii)	Maximum speedm/s the acceleration of the ball as it fell.	[3]				
	(iv)	Acceleration	[2]				
			[1]				
			[14]				

. ,	(-)	Using suitable diagrams showing outer electrons, explain how magnesium oxide is formed from a magnesium atom and an oxygen atom
	(ii)	State the type of bonds found in magnesium oxide.
	(iii)	Name two other compounds with the same bonds as the one mentioned in (a) (ii) .
(b)		2te an equation, including state symbols, for the reaction between gnesium oxide and hydrochloric acid.
(c)	Tab	lets containing magnesium oxide can be used as anti-acids for human nachs. One anti-acid tablet contains 3g of magnesium oxide. Calculate the relative molecular mass (M _r) of magnesium oxide.
	(1)	Calculate the relative molecular mass (Wir) of magnesiam oxide.
		M _r

For Examiner's Use

(ii) Calculate the number of anti-acid tablets needed to neutralise 100 cm³ of hydrochloric acid of concentration 3 mol/dm³. Show your working.

Number of tablets [4]


[15]

	s a uniform metre rul	er, freely pivoted at a point 30cm
from end P .	20cm	
5cm	200 111	
1		
9		·
	\triangle	
	centre	of mass
object S		
	Fig	3.1
(i) Calculate	the weight of object S	
		WeightN
(ii) Use the pr	inciple of moments to	determine the mass of the metre ruler

4

Sulf	furic acid and hydrochloric acid are typical strong acids.	
(a)	Explain the difference between a strong acid and a weak acid.	
		[
(b)	Write the following symbol equation as a word equation.	
	$\mathrm{Mg} \ + \ 2\mathrm{HC} l \ \rightarrow \ \mathrm{MgC} l_{2} \ + \ \mathrm{H_{2}}$	
		[
(c)	Write the word equation as a symbol equation.	
	sodium oxide + sulfuric acid → sodium sulfate + water	ı
(d)	Write the following symbol equation as a balanced ionic equation.	-
	CuO (s) + H_2SO_4 (aq) \rightarrow CuSO ₄ (aq) + $H_2O(l)$	1
(e)	When sulfuric acid dissolves in water, the following reaction occurs.	
	$H_2SO_4 + H_2O \rightarrow HSO_4^- + H_3O^+$	
	State and explain which species is acting as a base in this reaction.	
	Species	
	Explanation	
		[

5 Fig. 5.1 shows a battery of e.m.f. 6.0V and zero internal resistance connected to a switch and to two resistors in parallel, each of resistance 3.0Ω.

The switch **S** is closed for a period of 5.0 minutes. Calculate

(a) the current through each resistor.

Current through battery A [1]

(c) the total charge which passes through the battery.

Total charge [2]

(d) the energy supplied by the battery.

Energy [2]

[7]

6	Eth	anol	can be made from fermentation of glucose, $C_6H_{12}O_6$.	
	(a)	(i)	State the substance that is added to glucose in order to make ethanol.	[4]
		(ii)	Explain why air should not be allowed to enter the mixture when ethanol is prepared from this method.	[1]
				[2]
		(iii)	Write the equation for the preparation of ethanol from glucose by fermentation.	[0]
		(iv)	State the method used to obtain the ethanol formed from the mixture of ethanol and glucose solution.	[2]
	(b)	Giv	e one use of ethanol, other than its use in alcoholic drinks.	[1]
				[1]
				[7]
7	(a)	Det	ermine the number of neutrons contained in one atom of thorium, $^{234}_{90}$ Th.	[1]
	(b)	00	Th decays by emitting beta particles to become palladium, Pa. te an equation to represent this decay.	[1]
	(c)	A ra	adioactive sample containing 8 600 g of thorium is left to decay for 120 s. The half-life of thorium is 24 days.	[2]
		Cal	culate the mass of thorium left in the sample after 120 days.	
	/ -N	0-	mass of thorium g	[2]
	(d)	Sug	gest the origin of background radiation.	[1]
				[6]

[4]

8	B Diamond and graphite are two forms of the element carbon.				
	(a)	In terms of their structure, explain the difference in hardness of diamond and graphite.			
			[3]		
	(b)	Give one use of diamond.			
			[1]		

									_	Ę
DATA SHEET The Periodic Table of the Elements	Group	0	4 He Helium	20 Neon 10 40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		Lutetium 771	Lr Lawrencium 103
		II NI		19 Fluorine 9 35,5 C/ Chlorine	80 Br Bromine 35	127 / / Iodine	At Astatine 85		73 Yb Ytterbium 70	Nobelium 102
				16 Oxygen 8 32 S Sulfur 16	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
		^		Nitrogen 7 31 P Phosphorus 15	75 As Arsenic 33	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
		N		12 Carbon 6 Si Silicon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	Es Einsteinium 99
		=		11 B Boron 5 27 A/ Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T/ Thallium 81		162 Dy Dysprosium 66	Californium 98
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	Bk Berkelium 97
					Copper 29	108 Ag Silver 47	197 Au Gold 79		157 Gd Gadolinium 64	Curium 96
					59 Ni ckel 28	106 Pd Palladium 46	195 Pt Platinum 78	152 Eu Europium 63	Am Americium 95	
				1	59 Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium		150 Sm Samarium 62	Pu Plutonium 94
			1 H Hydrogen 1		56 Fe Iron 26	101 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium 93
					55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium 92
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium 90
					48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72		S S	a = relative atomic mass X = atomic symbol b = proton (atomic) number
					Scandium 21	89 Y	139 La Lanthanum 57 *	227 Ac Actinium 89 †		a = relative atomic mass X = atomic symbol b = proton (atomic) number
				Beryllium 4 24 Mg Magnesium 12	40 Ca Calcium 20	88 Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58 - 71 Lanthanoid series †90 - 103 Actinoid series	a X
		-		Lithium 3 23 Na Sodium 11	39 K Potassium 19	85 Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58 - 71 Le	Key

The volume of one mole of any gas is $24\ dm^3$ at room temperature and pressure (r.t.p.).

BLANK PAGE