| Centre Number | Candidate Number | Candidate Name | |---------------|------------------|----------------| | | | | ## NAMIBIA SENIOR SECONDARY CERTIFICATE ## PHYSICAL SCIENCE HIGHER LEVEL 8322/1 PAPER 1 1 hour 30 minutes Marks 70 **2017** Additional materials: Ruler Non-programmable calculator ## **INSTRUCTIONS AND INFORMATION TO CANDIDATES** - Candidates answer on the Question Paper on the spaces provided. - · Write your Centre Number, Candidate Number and Name in the spaces at the top of this page. - Write in dark blue or black pen. - You may use a soft pencil for any rough work, diagrams or graphs. - · Do not use correction fluid. - Do not write in the margin For Examiner's Use. - Answer all questions. - The number of marks is given in brackets [] at the end of each question or part question. - You will lose marks if you do not show your working or if you do not use appropriate units. - Take the weight of 1 kg to be 10 N (i.e acceleration of free fall $g = 10 \text{ m/s}^2$). - The Periodic Table is printed on page 11. | For Exan | niner's Use | |----------|-------------| | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | Total | | | | | | Marker | | |---------|--| | Checker | | This document consists of 11 printed pages and 1 blank page. Republic of Namibia MINISTRY OF EDUCATION, ARTS AND CULTURE 1 The motion of a hot air balloon during the interval **A** to **D** after it began to rise from the ground is shown in Fig. 1.1. Fig. 1.1 | (i) dur | ing the | interval | A | to | В. | |---------|---------|----------|---|----|----| |---------|---------|----------|---|----|----| [1] (ii) during the interval B to C.[1] (iii) at point **D**.[1] (b) In terms of A, B, C, D and P, give the expression of the total distance covered during the time interval A to D. Answer | (c) | a m
gro | When the balloon was stationary at a height of 30m above the ground, a metal ball was dropped. The ball accelerated constantly as it fell to the ground. An observer recorded that it took 3.0s for the ball to reach the ground. Calculate | | | | | | |-----|------------|---|------|--|--|--|--| | | (i) | the average speed of the ball as it fell. | | | | | | | | (ii) | Average speedm/s the maximum speed of the ball before it hits the ground. | [2] | | | | | | | (iii) | Maximum speedm/s the acceleration of the ball as it fell. | [3] | | | | | | | (iv) | Acceleration | [2] | | | | | | | | | [1] | | | | | | | | | [14] | . , | (-) | Using suitable diagrams showing outer electrons, explain how magnesium oxide is formed from a magnesium atom and an oxygen atom | |-----|-------|--| | | | | | | | | | | (ii) | State the type of bonds found in magnesium oxide. | | | (iii) | Name two other compounds with the same bonds as the one mentioned in (a) (ii) . | | (b) | | 2te an equation, including state symbols, for the reaction between gnesium oxide and hydrochloric acid. | | (c) | Tab | lets containing magnesium oxide can be used as anti-acids for human nachs. One anti-acid tablet contains 3g of magnesium oxide. Calculate the relative molecular mass (M _r) of magnesium oxide. | | | (1) | Calculate the relative molecular mass (Wir) of magnesiam oxide. | | | | M _r | | | | | | For
Examiner's
Use | |--------------------------| | | (ii) Calculate the number of anti-acid tablets needed to neutralise 100 cm³ of hydrochloric acid of concentration 3 mol/dm³. Show your working. Number of tablets [4] [15] | | s a uniform metre rul | er, freely pivoted at a point 30cm | |---------------------|------------------------|---------------------------------------| | from end P . | 20cm | | | 5cm | 200 111 | | | 1 | | | | 9 | | ·
 | | | \triangle | | | | centre | of mass | | object S | | | | | Fig | 3.1 | | (i) Calculate | the weight of object S | | | | | | | | | WeightN | | (ii) Use the pr | inciple of moments to | determine the mass of the metre ruler | 4 | Sulf | furic acid and hydrochloric acid are typical strong acids. | | |------|--|---| | (a) | Explain the difference between a strong acid and a weak acid. | | | | | | | | | [| | (b) | Write the following symbol equation as a word equation. | | | | $\mathrm{Mg} \ + \ 2\mathrm{HC} l \ \rightarrow \ \mathrm{MgC} l_{2} \ + \ \mathrm{H_{2}}$ | | | | | [| | (c) | Write the word equation as a symbol equation. | | | | sodium oxide + sulfuric acid → sodium sulfate + water | ı | | (d) | Write the following symbol equation as a balanced ionic equation. | - | | | CuO (s) + H_2SO_4 (aq) \rightarrow CuSO ₄ (aq) + $H_2O(l)$ | 1 | | (e) | When sulfuric acid dissolves in water, the following reaction occurs. | | | | $H_2SO_4 + H_2O \rightarrow HSO_4^- + H_3O^+$ | | | | State and explain which species is acting as a base in this reaction. | | | | Species | | | | Explanation | | | | | [| **5** Fig. 5.1 shows a battery of e.m.f. 6.0V and zero internal resistance connected to a switch and to two resistors in parallel, each of resistance 3.0Ω. The switch **S** is closed for a period of 5.0 minutes. Calculate (a) the current through each resistor. Current through battery A [1] **(c)** the total charge which passes through the battery. Total charge [2] (d) the energy supplied by the battery. Energy [2] [7] | 6 | Eth | anol | can be made from fermentation of glucose, $C_6H_{12}O_6$. | | |---|------|-------|--|-----| | | (a) | (i) | State the substance that is added to glucose in order to make ethanol. | [4] | | | | (ii) | Explain why air should not be allowed to enter the mixture when ethanol is prepared from this method. | [1] | | | | | | [2] | | | | (iii) | Write the equation for the preparation of ethanol from glucose by fermentation. | [0] | | | | (iv) | State the method used to obtain the ethanol formed from the mixture of ethanol and glucose solution. | [2] | | | (b) | Giv | e one use of ethanol, other than its use in alcoholic drinks. | [1] | | | | | | [1] | | | | | | [7] | | 7 | (a) | Det | ermine the number of neutrons contained in one atom of thorium, $^{234}_{90}$ Th. | [1] | | | (b) | 00 | Th decays by emitting beta particles to become palladium, Pa. te an equation to represent this decay. | [1] | | | (c) | A ra | adioactive sample containing 8 600 g of thorium is left to decay for 120 s. The half-life of thorium is 24 days. | [2] | | | | Cal | culate the mass of thorium left in the sample after 120 days. | | | | | | | | | | / -N | 0- | mass of thorium g | [2] | | | (d) | Sug | gest the origin of background radiation. | [1] | | | | | | [6] | [4] | 8 | B Diamond and graphite are two forms of the element carbon. | | | | | |---|---|--|-----|--|--| | | (a) | In terms of their structure, explain the difference in hardness of diamond and graphite. | [3] | | | | | (b) | Give one use of diamond. | | | | | | | | [1] | | | | | | | | | | | | | _ | Ę | |---|-------|-------|--------------------------------|--|------------------------------------|-------------------------------------|------------------------------------|--------------------------------------|---|--| | DATA SHEET The Periodic Table of the Elements | Group | 0 | 4 He Helium | 20
Neon
10
40
Ar
Argon | 84
Kr
Krypton
36 | 131
Xe
Xenon
54 | Radon 86 | | Lutetium 771 | Lr
Lawrencium
103 | | | | II NI | | 19
Fluorine
9
35,5
C/
Chlorine | 80
Br
Bromine
35 | 127 / / Iodine | At
Astatine
85 | | 73
Yb
Ytterbium
70 | Nobelium
102 | | | | | | 16
Oxygen
8
32
S
Sulfur
16 | 79
Se
Selenium
34 | 128
Te
Tellurium
52 | Po
Polonium
84 | | 169
Tm
Thulium
69 | Md
Mendelevium
101 | | | | ^ | | Nitrogen 7 31 P Phosphorus 15 | 75
As
Arsenic
33 | Sb
Antimony
51 | 209
Bi
Bismuth
83 | | 167
Er
Erbium
68 | Fm
Fermium
100 | | | | N | | 12 Carbon 6 Si Silicon 14 | 73
Ge
Germanium
32 | 119
Sn
Tin | 207
Pb
Lead
82 | | 165
Ho
Holmium
67 | Es
Einsteinium
99 | | | | = | | 11
B Boron 5 27 A/ Aluminium 13 | 70
Ga
Gallium
31 | 115
In
Indium
49 | 204
T/
Thallium
81 | | 162
Dy
Dysprosium
66 | Californium 98 | | | | | | | 65
Zn
Zinc
30 | 112
Cd
Cadmium
48 | 201
Hg
Mercury
80 | | 159
Tb
Terbium
65 | Bk
Berkelium
97 | | | | | | | Copper 29 | 108
Ag
Silver
47 | 197
Au
Gold
79 | | 157
Gd
Gadolinium
64 | Curium
96 | | | | | | | 59
Ni ckel
28 | 106
Pd
Palladium
46 | 195
Pt
Platinum
78 | 152
Eu
Europium
63 | Am
Americium
95 | | | | | | | 1 | 59
Cobalt
27 | 103
Rh
Rhodium
45 | 192
Ir
Iridium | | 150
Sm
Samarium
62 | Pu Plutonium 94 | | | | | 1
H
Hydrogen
1 | | 56
Fe
Iron
26 | 101
Ru
Ruthenium
44 | 190
Os
Osmium
76 | | Pm
Promethium
61 | Neptunium
93 | | | | | | | 55
Mn
Manganese
25 | Tc
Technetium
43 | 186
Re
Rhenium
75 | | 144
Nd
Neodymium
60 | 238
U
Uranium
92 | | | | | | | 52
Cr
Chromium
24 | 96
Mo
Molybdenum
42 | 184
W
Tungsten
74 | | 141
Pr
Praseodymium
59 | Pa Protactinium 91 | | | | | | | 51
V
Vanadium
23 | 93
Nb
Niobium
41 | 181
Ta
Tantalum
73 | | 140
Ce
Cerium
58 | 232
Th
Thorium
90 | | | | | | | 48
Ti
Titanium
22 | 91
Zr
Zirconium
40 | 178
Hf Hafnium 72 | | S S | a = relative atomic mass X = atomic symbol b = proton (atomic) number | | | | | | | Scandium 21 | 89 Y | 139 La
Lanthanum
57 * | 227
Ac
Actinium
89 † | | a = relative atomic mass X = atomic symbol b = proton (atomic) number | | | | | | Beryllium 4 24 Mg Magnesium 12 | 40
Ca
Calcium
20 | 88
Sr
Strontium | 137
Ba
Barium
56 | 226
Ra
Radium
88 | *58 - 71 Lanthanoid series
†90 - 103 Actinoid series | a X | | | | - | | Lithium 3 23 Na Sodium 11 | 39
K
Potassium
19 | 85
Rb
Rubidium
37 | 133
Cs
Caesium
55 | Fr
Francium
87 | *58 - 71 Le | Key | The volume of one mole of any gas is $24\ dm^3$ at room temperature and pressure (r.t.p.). ## **BLANK PAGE**