| Centre Number | Candidate Number | Candidate Name | |---------------|------------------|----------------| | | | | | | | | ### NAMIBIA SENIOR SECONDARY CERTIFICATE #### PHYSICAL SCIENCE HIGHER LEVEL 8322/3 PAPER 3 Practical Test 2 hours Marks 40 **2017** Additional materials: As per instructions to subject teacher Non-programmable calculator A pair of scissors #### **INSTRUCTIONS AND INFORMATION TO CANDIDATES** - Candidates answer on the Question Paper in the spaces provided. - Write your Centre Number, Candidate Number and Name in the spaces at the top of this page. - Write in dark blue or black pen. - · You may use a soft pencil for any diagrams, graphs or rough working. - · Do not use correction fluid. - Do not write in the margin For Examiner's Use. - Answer **all** questions. - The number of marks is given in brackets [] at the end of each question or part question. - The Periodic Table is printed on page 9. - Chemistry practical notes are printed on page 10. - The insert for Question 1 is printed on page 11. | For Examiner's Use | | | |--------------------|--|--| | 1 | | | | 2 | | | | Total | | | | Marker | | | | Checker | | | This document consists of 11 printed pages and 1 blank page. Republic of Namibia MINISTRY OF EDUCATION, ARTS AND CULTURE 1 Read all instructions and questions carefully before you start the experiment. In this experiment, you are going to investigate the effect of temperature on the speed of reaction between hydrochloric acid and aqueous sodium thiosulfate. When these chemicals react they form a precipitate, which makes the solution become cloudy. The speed at which the precipitate is formed depends on several factors. Fig. 1.1 shows the setup of apparatus. Fig. 1.1 Record your results in the table in Fig. 1.2. | experiment number | initial
temperature
of solution /°C | final
temperature
of solution /°C | average
temperature of
the solution /°C | time for
the cross
to disappear /s | |-------------------|---|---|---|--| | 1 | | | | | | 2 | | | | | | 3 | | | | | | 4 | | | | | | 5 | | | | | Fig. 1.2 - (a) Cut out the insert provided on page 11. - **(b)** Using a large measuring cylinder pour 50 cm³ of aqueous sodium thiosulfate into the conical flask. Measure the temperature of the solution and record this as the initial temperature in the table in Fig. 1.2. - (c) Place the conical flask on the cross printed on the insert. You need to be able to see the cross from above the flask through the solution. - (d) Using the small measuring cylinder, add 10 cm³ of the dilute hydrochloric acid provided to the liquid in the flask. Immediately start your timer and shake the flask. Keep the flask above the cross the whole time. - **(e)** In the table in Fig. 1.2, record the time taken for the cross to disappear from view. [1] **(f)** Measure the final temperature of the solution in the flask, record this in the table in Fig. 1.2. [1] **(g)** You are going to carry out the experiment at different temperatures to obtain four more sets of reading. Repeat step (b) through (f). Each time; - measure a fresh 50 cm³ of aqueous sodium thiosulfate and put it in a clean conical flask - heat the solution mixture until it is 10°C higher than the previous experiment - add 10 cm³ of dilute hydrochloric acid - take the readings as before and record them in the table in Fig. 1.2 [4] **(h)** Calculate the average temperature of the solution for each experiment. Record your answers in the table in Fig. 1.2. Space for working [3] (i) On Fig. 1.3 draw a graph of the time taken for the cross to disappear against average temperature of the solution. Draw a smooth line graph. Fig. 1.3 | With reference to kinetic particle theory, explain the trend in the speed of reaction. | [3] | |--|-----| | | [2] | (k) Explain why the same volume of sodium thiosulfate and the same volume of hydrochloric acid are used in each experiment. [1] (I) Use your graph to determine the time taken for the cross to disappear if the average temperature was 70°C. Show clearly on your graph how you did this. [2] (m) On Fig. 1.3, sketch the curve you would expect if the experiments were repeated using the same volume of sodium thiosulfate solution at a lower concentration. [20] 2 Read all instructions in this question first before you start the experiment. You need to check that you have all equipment to do the following investigation. In this experiment you are to investigate how potential difference and current are related for a light bulb and for a copper wire. Fig. 2.1 shows the circuit you will be using. The circuit has been setup for you. Fig. 2.1 You will use this circuit to study the resistance of the light bulb and that of the copper wire when the circuit is closed. (a) Draw a circuit diagram of this circuit. [3] ent and notential difference **(b)** Close the switch and record readings for current and potential difference. Open the switch as soon as you have taken your readings. Current..... Potential difference [2] [2] (c) Complete the column headings in the table in Fig. 2.2 and transfer your readings from (b) into it. | light bulb | number of cell | current/ | P.d / | |------------|----------------|----------|-------| | | 1 | | | | | 2 | | | | | 3 | | | Fig. 2.2 (d) Use the other torch cells to repeat (b) for a two torch cell battery and a three torch cell battery. Record your readings below and in the table in Fig. 2.2. (i) For a two torch cell battery. (ii) For a three torch cell battery. Current..... Potential difference[1] **(e)** Replace the light bulb with 1 m of copper wire. Extend the table in Fig 2.2 to allow you to include **three** sets of readings for this experiment using copper wire instead of the light bulb. [2] (f) Repeat (b) and (d) to obtain three sets of readings for the copper wire experiment. Record all your readings in your extended table in Fig. 2.2. [3] 8322/3/17 **(g)** In Fig. 2.3 plot two separate graphs, using the same axes, of current (y-axis) against potential difference (x-axis). Use all three sets of data from both experiments. Draw a separate line for each experiment. Label the light bulb line ${\bf L}$ and the copper wire line ${\bf C}$. Fig. 2.3 | (h) C | mpare and explain the different shapes of the lines. | [4] | |-------|--|------------------| | | | | | | [20 | [2]
0] | | | | | | | | 0 | 4 He Helium | 20
Ne
Neon | 40
Ar
Argon | 84
Kr
Krypton
36 | 131
Xe
Xenon
54 | Rn
Radon
86 | | 175
Lu
Lutetium
71 | Lr
Lawrencium
103 | |--|-------|-----|--------------------------------|--------------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|----------------------------------|---|---| | | | NII | | 19
F
Fluorine | 35,5 C/ Chlorine | 80
Br
Bromine | 127
J
lodine
53 | At
Astatine
85 | | 173
Yb
Ytterbium
70 | Nobelium
102 | | | | IN | | 16
O
Oxygen
8 | 32
S
Sulfur
16 | 79
Se
Selenium
34 | 128
Te
Tellurium
52 | Po
Polonium
84 | | 169
Tm
Thulium
69 | Md
Mendelevium
101 | | | | ۸ | | 14
N
Nitrogen
7 | 31
P
Phosphorus
15 | 75
As
Arsenic | Sb
Antimony
51 | 209
Bi
Bismuth
83 | | 167
Er
Erbium
68 | Fm
Fermium
100 | | | | N | | 12
C
Carbon
6 | 28
Si
Silicon | 73
Ge
Germanium
32 | 119
Sn
Tin | 207
Pb
Lead
82 | | 165
Ho
Holmium
67 | Es
Einsteinium
99 | | | | = | | 11
Boron
5 | 27
A.
Aluminium
13 | 70
Ga
Gallium
31 | 115
In
Indium
49 | 204
T/
Thallium
81 | | 162
Dy
Dysprosium
66 | Cf
Californium
98 | | | | | | | | 65
Zn
Zinc
30 | 112
Cd
Cadmium
48 | 201
Hg
Mercury
80 | | 159
Tb
Terbium
65 | Bk
Berkelium
97 | | nents | | | | | | 64
Copper
29 | 108
Ag
Silver
47 | 197
Au
Gold
79 | | 157
Gd
Gadolinium
64 | Cm
Curium
96 | | DATA SHEET
The Periodic Table of the Elements | Group | | | | | 59
Nickel
28 | 106
Pd
Palladium
46 | 195
Pt
Platinum
78 | | 152
Eu
Europium
63 | Am
Americium
95 | | DATA
e Periodic Tal | ō | | | | | 59
Co
Cobalt
27 | 103
Rh
Rhodium
45 | 192 Ir Iridium | | 150
Sm
Samarium
62 | Pu Plutonium 94 | | £ | | | 1
H
Hydrogen
1 | | | 56
Fe
Iron | 101
Ru
Ruthenium
44 | 190
Os
Osmium
76 | | Pm
Promethium
61 | Np
Neptunium
93 | | | | | | • | | 55
Mn
Manganese
25 | Tc
Technetium
43 | 186
Re
Rhenium
75 | | 144
Nd
Neodymium
60 | 238
U
Uranium
92 | | | | | | | | 52
Cr
Chromium
24 | 96
Mo
Molybdenum
42 | 184
W
Tungsten
74 | | 141
Pr
Praseodymium
59 | Pa Protactinium 91 | | | | | | | | 51
V
Vanadium
23 | 93
Nb
Niobium
41 | 181
Ta
Tantalum
73 | | Cerium 58 | 232
Th
Thorium
90 | | | | | | | | 48
Ti
Titanium
22 | 91
Zr
Zirconium
40 | 178
Hf Hafnium 72 | | 1 | a = relative atomic mass X = atomic symbol b = proton (atomic) number | | | | | | | | Scandium 21 | 89 Y | 139 La Lanthanum 57 * | 227
Actinium
89 † | s | a = relative atomic mass X = atomic symbol b = proton (atomic) number | | | | II | | 9
Be
Beryllium | 24
Mg
Magnesium
12 | 40
Ca
Calcium | 88
Sr
Strontium
38 | 137
Ba
Barium
56 | 226
Ra
Radium
88 | *58 - 71 Lanthanoid series
†90 - 103 Actinoid series | a ★ | | | | _ | | 7
Li
Lithium
3 | 23
Na
Sodium
11 | 39
K
Potassium
19 | 85
Rb
Rubidium
37 | 133
Cs
Caesium
55 | Fr
Francium
87 | *58 - 71 La
†90 - 103 A | Key | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). ## **CHEMISTRY PRACTICAL NOTES** ## **Test for anions** | anion | test | test result | |--|---|--| | carbonate (CO ₃ ²⁻) | add dilute acid | effervescence, carbon dioxide produced | | chloride (Cl ⁻) [in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | white ppt. | | iodide (I ⁻)
[in solution] | acidify with dilute nitric acid, then add aqueous lead (II) nitrate | yellow ppt. | | nitrate (NO ₃) [in solution] | add aqueous sodium hydroxide,
then aluminium foil, warm
carefully | ammonia produced | | sulfate (SO ₄ ²⁻) [in solution] | acidify with dilute nitric acid, then add aqueous barium nitrate | white ppt. | # Tests for aqueous cations | cation | effect of aqueous sodium hydroxide | effect of aqueous ammonia | |--|---|---| | aluminium (Al ³⁺) | white ppt., soluble in excess, giving a colourless solution | white ppt., insoluble in excess | | ammonium (NH ₄ ⁺) | ammonia produced on warming | _ | | calcium (Ca ²⁺) | white ppt., insoluble in excess | no ppt., or very slight white ppt. | | copper(II) (Cu ²⁺) | light blue ppt., insoluble in excess | light blue ppt., soluble in excess, giving a dark blue solution | | iron(II) (Fe ²⁺) | green ppt., insoluble in excess | green ppt., insoluble in excess | | iron(III) (Fe ³⁺) | red-brown ppt., insoluble in excess | red-brown ppt., insoluble in excess | | zinc (Zn ²⁺) | white ppt., soluble in excess, giving a colourless solution | white ppt., soluble in excess, giving a colourless solution | ## Test for gases | gas | test and test result | |-----------------------------------|----------------------------------| | ammonia (NH ₃) | turns damp red litmus paper blue | | carbon dioxide (CO ₂) | turns limewater milky | | chlorine (Cl ₂) | bleaches damp litmus paper | | hydrogen (H ₂) | 'pops' with a lighted splint | | oxygen (O ₂) | relights a glowing splint | Insert for Question 1 ## **BLANK PAGE**