Basic Calculations

Question Paper

Level	Pre U
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	Basic Calculations-Physical Chemistry
Booklet	Question Paper

Time Allowed: 18 minutes

Score: /15

Percentage: /100

Grade Boundaries:

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1. (a) When aqueous barium chloride is added to a solution containing sulfate ions a whit precipitate of barium sulfate is formed. This white precipitate is very sparingly soluble in water.
(i) Write the ionic equation, including state symbols, for the formation of the white precipitate.
[1
(ii) Write the expression for the solubility product, $K_{\rm sp}$, of barium sulfate.
[1
(iii) Given that the value of $K_{\rm sp}$ for barium sulfate is 1.08 \times 10 ⁻¹⁰ at 298 K, calculate the concentration of sulfate ions in a saturated solution of barium sulfate. Give your answe to three significant figures.
mol dm ⁻³ [2
(iv) Regulations state that the maximum permitted level of sulfate ions in drinking water is $250 \mathrm{mg}\mathrm{dm}^{-3}$ (1 mg = 1 x $10^{-3}\mathrm{g}$).
200 cm ³ of aqueous barium chloride solution was added to 300 cm ³ of drinking water and a white precipitate formed. Assume that the sample of water contained the maximum permitted level of sulfate ions. Calculate the minimum concentration, in mol dm ⁻³ , of barium chloride in the solution that was added to the sample of drinking water.
moldm ⁻³ [3

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b)		e electrode potential of silver in contact with a solution of silver ions, Ag ⁺ (aq), is impossible neasure directly but can be measured using a standard hydrogen electrode.
	Usi	ng this method, the standard electrode potential of silver, E^{\bullet} , is found to be +0.80 V.
	(i)	Complete the cell diagram for the cell used to measure the standard electrode potential of silver. State the concentration of H ⁺ (aq) used.
		H ₂ (g) 2H ⁺ (aq)
		concentration of H ⁺ (aq) = mol dm ⁻³ [3]
	(ii)	When an excess of sodium chloride solution is added to the right-hand half-cell the silver ions will be precipitated as solid silver chloride, AgC <i>l</i> . Use Le Chatelier's principle to explain qualitatively how the cell emf will change as a result.
		[2]
	(iii)	At 298 K, the expression below can be used to calculate the concentration of silver ions in solution under non-standard conditions, from a measurement of the electrode potential.
		$E = E^{\Theta} - 0.030 \log \frac{1}{[Ag^{+}(aq)]^{2}}$
		E = electrode potential of silver under non-standard conditions E^{Θ} = standard electrode potential of silver = +0.80 V
		The addition of excess aqueous sodium chloride, $NaCl(aq)$, to the right-hand half-cell results in a chloride ion concentration of 2.1 mol dm ⁻³ .
		Given that $K_{\rm sp}$ for silver chloride, AgC l , is 1.8 × 10 ⁻¹⁰ at 298 K, calculate the value of E , in the cell shown in (b)(i) , after the addition of the excess aqueous sodium chloride to the right-hand half-cell.

E =V [3]

[Total: 15]