

TOPICAL PAST PAPER QUESTIONS WORKBOOK

AS & A Level Mathematics (9709) Paper 5 [Probability & Statistics 1]

Exam Series: May 2015 – May 2022

Format Type B:

Each question is followed by its answer scheme

Chapter 4

Discrete random variables

 $193.\ 9709_m22_qp_52\ Q:\ 1$

A fair red spinner has edges numbered 1, 2, 2, 3. A fair blue spinner has edges numbered -3, -2, -1, -1. Each spinner is spun once and the number on the edge on which each spinner lands is noted. The random variable X denotes the sum of the resulting two numbers.

(a)	Draw up the probability distribution table for X .	[3]
		•••••
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
	XO)	
		• • • • • • • • • • • • • • • • • • • •
	~~~	
<b>(b)</b>	Given that $E(X) = 0.25$ , find the value of $Var(X)$ .	[2]
		• • • • • • • • • • • • • • • • • • • •
	••	
		• • • • • • • • • • • • • • • • • • • •
		•••••
		•••••





Question				Ans	swer		Marks	Guidance
(a)	X P(X)	-2 1	-1 3	0 5	1 5	2 2	B1	Table with correct $X$ values and at least one probability $0 . Condone any additional X values if probability stated as 0. No repeated X values.$
		16	16	5 16	16	16	В1	3 correct probabilities linked with correct outcomes, may not be in table.
		0.0625	0.1875	0.3125	0.3125	0.125	B1	2 further correct probabilities linked with correct outcomes, may not be in table No repeated X values.
								SC if less than 3 correct probabilities seen, award SCB1 Sum of <i>their</i> probabilities, $0 , of 4,5 or 6 X values = 1 (condone summing to 1\pm0.01 or better).$
							3	
(b)	(b) $\left[\frac{1}{16} \times -2^2 + \frac{3}{16} \times -1^2 \left( + \frac{5}{16} \times 0^2 \right) + \frac{5}{16} \times 1^2 + \frac{2}{16} \times 2^2 - \left( \frac{1}{4} \right)^2 \right]$ $\frac{1 \times 4 + 3 \times 1 + 5 \times 0 + 5 \times 1 + 2 \times 4}{16} - 0.25^2$				M1	Appropriate variance formula using $(E(X))^2$ value, accept unsimplified. FT <i>their</i> table with at least 3 different $X$ values even if probabilities not summing to 1, $0 . Condone 1 error providing all probabilities < 1 and 0.25^2 used$		
	$\left[=\frac{5}{4}-\right]$	$\frac{1}{16} = \left] \frac{19}{16} \right$	, 1.1875				A1	Condone 1.188 or 1.19 WWW
							2	
	••	•			2		Jan S	







 $194.\ 9709_m22_qp_52\ Q:\ 2$ 

In a certain country, the probability of more than 10 cm of rain on any particular day is 0.18, independently of the weather on any other day.

1)	Find the probability that in any randomly chosen 7-day period, more than 2 days have more than 10 cm of rain.
	<i></i>
<b>)</b> )	For 3 randomly chosen 7-day periods, find the probability that exactly two of these periods has at least one day with more than 10 cm of rain.
)	For 3 randomly chosen 7-day periods, find the probability that exactly two of these periods has at least one day with more than 10 cm of rain.
)	For 3 randomly chosen 7-day periods, find the probability that exactly two of these periods has at least one day with more than 10 cm of rain.
))	For 3 randomly chosen 7-day periods, find the probability that exactly two of these periods ha at least one day with more than 10 cm of rain.
))	For 3 randomly chosen 7-day periods, find the probability that exactly two of these periods ha at least one day with more than 10 cm of rain.
))	For 3 randomly chosen 7-day periods, find the probability that exactly two of these periods ha at least one day with more than 10 cm of rain.
)	at least one day with more than 10 cm of rain.
))	at least one day with more than 10 cm of rain.
))	at least one day with more than 10 cm of rain.
	at least one day with more than 10 cm of rain.
	at least one day with more than 10 cm of rain.
	at least one day with more than 10 cm of rain.





$P(>2) = 1 - P(0,1,2) = 1$ $1 - (^{7}C_{0} \ 0.18^{0} \ 0.82^{7} + ^{7}C_{1} \ 0.18^{1} \ 0.82^{6} + ^{7}C_{2} \ 0.18^{2} \ 0.82^{5})$ $= 1 - (0.249285 + 0.383048 + 0.252251)$ $= 1 - 0.88458$ $0.115$ $P(\text{at least 1 day of rain}) = 1 - P(0) = 1 - (0.82)^{7} = ] \ 0.7507$ $P(\text{exactly 2 periods}) = ] \ 0.7507^{2} \times (1 - 0.7507) \times 3$	M1 A1 B1 3 B1 A1 A1	Condone omission of brackets if recovered WWW. $0.115 \le p < 0.1155$ not from wrong working
= 1 - 0.88458 0.115 P(at least 1 day of rain) = 1 - P(0) = 1 - $(0.82)^7$ = ] 0.7507 P(exactly 2 periods) =] 0.7507 ² ×(1-0.7507)×3	B1 3 B1 M1	Condone omission of brackets if recovered $ \label{eq:www.0.115}                                   $
P(at least 1 day of rain) = $1 - P(0) = 1 - (0.82)^7 = ]0.7507$ P(exactly 2 periods) = $]0.7507^2 \times (1 - 0.7507) \times 3$	3 B1 M1	AWRT 0.751 seen $FT \text{ their } 1-p^7 \text{ or their } 0.7507 \text{ if identified, not } 0.18, 0.82$ $Accept \times {}^3C_r, r=1,2 \text{ or } \times {}^3P_1 \text{ for } \times 3$ $Condone \times 2$ $Accept 0.421 \leqslant p \leqslant 0.4215$
P(exactly 2 periods) = $   0.7507^2 \times (1 - 0.7507) \times 3 $	B1 M1	FT their $1-p^7$ or their 0.7507 if identified, not 0.18, 0.82 Accept $\times^3 C_r$ , r=1,2 or $\times^3 P_1$ for $\times 3$ Condone $\times 2$ Accept 0.421 $\leq p \leq 0.4215$
P(exactly 2 periods) = $   0.7507^2 \times (1 - 0.7507) \times 3 $	M1	FT their $1-p^7$ or their 0.7507 if identified, not 0.18, 0.82 Accept $\times^3 C_r$ , r=1,2 or $\times^3 P_1$ for $\times 3$ Condone $\times 2$ Accept 0.421 $\leq p \leq 0.4215$
	A1	Accept $\times^3 C_t$ , r=1,2 or $\times^3 P_1$ for $\times 3$ Condone $\times 2$ Accept $0.421 \le p \le 0.4215$
0.421		Accept $0.421 \le p \le 0.4215$ SC B1 if $0/3$ scored for final answer only
	3	$0.421 \leqslant p \leqslant 0.4215$
		0.
Palpa	0.	
	Palpa	Palpacal





 $195.\ 9709_m22_qp_52\ Q:\ 6$ 

A factory produces chocolates in three flavours: lemon, orange and strawberry in the ratio 3:5:7 respectively. Nell checks the chocolates on the production line by choosing chocolates randomly one at a time.

(a)	chocolate that she checks.
<b>(b)</b>	Find the probability that the first chocolate with lemon flavour that Nell chooses is after she ha checked at least 6 chocolates. [2
	prise' boxes of chocolates each contain 15 chocolates: 3 are lemon, 5 are orange and 7 are wberry.
	a has a box of Surprise chocolates. She chooses 3 chocolates at random from the box. She eat a chocolate before choosing the next one.
(c)	Find the probability that none of Petra's 3 chocolates has orange flavour. [2]





	n of Petra's 3 chocolates has a different flav	
	<b>W</b> .	
ind the probability that at le	ast 2 of Petra's 3 chocolates have strawbern	ry flavour given that i
ind the probability that at le		ry flavour given that i
ind the probability that at le		ry flavour given that i
Find the probability that at le		ry flavour given that i
Find the probability that at le		ry flavour given that i
ind the probability that at le		ry flavour given that i
ind the probability that at le		ry flavour given that i
ind the probability that at le		ry flavour given that i
Find the probability that at le		ry flavour given that i
ind the probability that at le		ry flavour given that i
Find the probability that at le		ry flavour given that i
Find the probability that at le		ry flavour given that i
Find the probability that at le		ry flavour given that i
		ry flavour given that i







 ${\bf Answer:}$ 

Question	Answer	Marks	Guidance
(a)	[Probability of lemon = $\frac{3}{15} = \frac{1}{5}$ ]	B1	0.0524288 rounded to more than 3SF if final answer
	$\left[ \left( \frac{4}{5} \right)^6 \times \frac{1}{5} = \right] \frac{4096}{78125}, 0.0524$		
		1	
(b)	$\left(1-\frac{1}{5}\right)^6$	M1	or $\left(\frac{4}{5}\right)^6$ . FT <i>their</i> $\frac{1}{5}$ or correct. From final answer
			Condone $\left(\frac{4}{5}\right)^5 \operatorname{or}\left(\frac{1}{5}\right) \times \left(\frac{4}{5}\right)^5 + \left(\frac{4}{5}\right)^6$
	$\frac{4096}{15625}$ , 0.262	A1	0.262144 rounded to more than 3SF
	Alternative method for question 6(b)		
	$ \left[1 - P(1,2,3,4,5,[6]) = \right] \\ 1 - \left(\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5} + \left(\frac{4}{5}\right)^5 \times \frac{1}{5}\right) $	M1	From final answer  Condone omission of $\left(\frac{4}{5}\right)^5 \times \frac{1}{5}$
	4096 15625, 0.262	A1	0.262144 rounded to more than 3SF
		2	
Question	Answer	Marks	Guidance
(c)	$\frac{10}{15} \times \frac{9}{14} \times \frac{8}{13}$	M1	$\frac{a}{15} \times \frac{a-1}{14} \times \frac{a-2}{13}$ , no additional terms
	$\left  \frac{24}{91}, 0.264 \right $	A1	0.263736 rounded to more than 3SF
		- Y	
	Alternative method for question 6(c)	J	
	Alternative method for question 6(c) $\frac{3}{15} \times \frac{2}{14} \times \frac{1}{13} + 3 \times \frac{3}{15} \times \frac{2}{14} \times \frac{7}{13} + 3 \times \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} + \frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}$	M1	[3Ls + 2Ls1S + 1L2Ss + 3Ss] Condone one numerator error. Condone no multiplications seen if tree diagram complete with probabilities on each branch, scenarios listed and attempt at evaluation
		M1	Condone one numerator error.  Condone no multiplications seen if tree diagram complete with probabilities on each branch, scenarios listed and
	$\frac{\frac{3}{15} \times \frac{2}{14} \times \frac{1}{13} + 3 \times \frac{3}{15} \times \frac{2}{14} \times \frac{7}{13} + 3 \times \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} + \frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}}{15}$		Condone one numerator error. Condone no multiplications seen if tree diagram complete with probabilities on each branch, scenarios listed and attempt at evaluation
	$\frac{\frac{3}{15} \times \frac{2}{14} \times \frac{1}{13} + 3 \times \frac{3}{15} \times \frac{2}{14} \times \frac{7}{13} + 3 \times \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} + \frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}}{\frac{24}{91}}, 0.264$		Condone one numerator error. Condone no multiplications seen if tree diagram complete with probabilities on each branch, scenarios listed and attempt at evaluation
	$\frac{\frac{3}{15} \times \frac{2}{14} \times \frac{1}{13} + 3 \times \frac{3}{15} \times \frac{2}{14} \times \frac{7}{13} + 3 \times \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} + \frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}}{\frac{24}{91}}, 0.264$ Alternative method for question 6(c)	A1	Condone one numerator error.  Condone no multiplications seen if tree diagram complete with probabilities on each branch, scenarios listed and attempt at evaluation  0.263736 rounded to more than 3SF  1 – P(3,2,1 oranges)
	$\frac{\frac{3}{15} \times \frac{2}{14} \times \frac{1}{13} + 3 \times \frac{3}{15} \times \frac{2}{14} \times \frac{7}{13} + 3 \times \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} + \frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}}{\frac{24}{91}}, 0.264$ Alternative method for question 6(c) $1 - \left(\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13} + 3 \times \frac{5}{15} \times \frac{4}{14} \times \frac{10}{13} + 3 \times \frac{5}{15} \times \frac{10}{14} \times \frac{9}{13}\right)$ $\frac{24}{91}, 0.264$ Alternative method for question 6(c)	A1	Condone one numerator error.  Condone no multiplications seen if tree diagram complete with probabilities on each branch, scenarios listed and attempt at evaluation  0.263736 rounded to more than 3SF  1 – P(3,2,1 oranges)  Condone one numerator error.
	$\frac{\frac{3}{15} \times \frac{2}{14} \times \frac{1}{13} + 3 \times \frac{3}{15} \times \frac{2}{14} \times \frac{7}{13} + 3 \times \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} + \frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}}{\frac{24}{91}, 0 \cdot 264}$ $\frac{\frac{24}{91}, 0 \cdot 264}{1 - \left(\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13} + 3 \times \frac{5}{15} \times \frac{4}{14} \times \frac{10}{13} + 3 \times \frac{5}{15} \times \frac{10}{14} \times \frac{9}{13}\right)}{\frac{24}{91}, 0 \cdot 264}$	A1	Condone one numerator error.  Condone no multiplications seen if tree diagram complete with probabilities on each branch, scenarios listed and attempt at evaluation  0.263736 rounded to more than 3SF  1 – P(3,2,1 oranges)  Condone one numerator error.
	$\frac{\frac{3}{15} \times \frac{2}{14} \times \frac{1}{13} + 3 \times \frac{3}{15} \times \frac{2}{14} \times \frac{7}{13} + 3 \times \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} + \frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}}{\frac{24}{91}}, 0.264$ Alternative method for question 6(c) $1 - \left(\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13} + 3 \times \frac{5}{15} \times \frac{4}{14} \times \frac{10}{13} + 3 \times \frac{5}{15} \times \frac{10}{14} \times \frac{9}{13}\right)$ $\frac{24}{91}, 0.264$ Alternative method for question 6(c) $\frac{24}{91}, 0.264$	M1 A1	Condone one numerator error.  Condone no multiplications seen if tree diagram complete with probabilities on each branch, scenarios listed and attempt at evaluation  0.263736 rounded to more than 3SF  1 – P(3,2,1 oranges)  Condone one numerator error.





(d) $\frac{7}{15} \times \frac{5}{14} \times \frac{3}{13} \times 3!$ $\frac{3}{13}, 0.231$	M1 M1	All probabilities of the form: $\frac{7}{a} \times \frac{5}{b} \times \frac{3}{c}$ , $13 \leqslant a,b,c \leqslant \underline{15}$ $\frac{e}{f} \times \frac{g}{h} \times \frac{i}{f} \times 3! \ ef,g,h,i,j  positive integers forming probabilities or 6 identical probability calculations or values added, no additional terms$
$\frac{3}{13}$ , 0.231		probabilities or 6 identical probability calculations or values added, no additional terms
$\frac{3}{13}$ , 0.231	A1	
1 12		0.230769 rounded (not truncated) to more than 3SF
Alternative method for question 6(d)	-	
$\frac{{}^{3}C_{1}^{5}C_{1}^{7}C_{1}}{{}^{15}C_{3}}$	M1	$\frac{{}^{3}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}}{k}, k \text{ integer} > 1$ Condens we of computations
	M1	Condone use of permutations
		$\frac{{}^{3}C_{a}^{5}C_{b}^{7}C_{c}}{{}^{15}C_{3}}, 0 < a < 3, 0 < b < 5, 0 < c < 7,$ Condone use of permutations
$\frac{3}{13}$ , 0·231	A1	0·230769 rounded (not truncated) to more than 3SF
	3	10)
Question Answ	er Marks	Guidance
(e) $\frac{\frac{7}{15} \times \frac{6}{14} \times \frac{5}{13} + \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} \times 3}{their(c)} = \frac{14}{65} \div$	<b>B1</b>	$\frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} \times 3 \text{ seen (SSL, SLS, LSS)}$ SC B1 $\frac{3}{65} \times 3, \frac{126}{2730} \times 3 \text{ seen}$
	Bi	$\frac{7}{15} \times \frac{6}{14} \times \frac{5}{13} \text{ seen in numerator (SSS)}$ SCB1 $\frac{210}{2730}, \frac{1}{13}$ seen in numerator
	MI	Fraction with <i>their</i> (c) or correct in denominator $\left(\frac{720}{2730}, \frac{24}{91}, 0.263736\right)$
$=\frac{49}{60}$ , $0.817$	AI	Accept 0.816
Alternative method for question 6(e)		
$\frac{{}^{7}C_{2}^{3}C_{1}+{}^{7}C_{3}}{{}^{10}C_{3}}$	B1	$^{7}C_{2} \times ^{3}C_{1}$ seen (SSL, SLS, LSS) SCB1 21 × 3 seen or use of permutations
	B1	⁷ C ₃ seen in numerator (SSS) SCB1 35 seen in numerator or use of permutations
••	M1	Fraction with 10 C $_3$ or consistent with <i>their</i> numerator of <b>6(c)</b> in denominator
$=\frac{49}{60}$ , 0.817	A1	Accept 0.816
	4	





196.  $9709_s22_qp_51$  Q: 4

Jacob has four coins. One of the coins is biased such that when it is thrown the probability of obtaining a head is  $\frac{7}{10}$ . The other three coins are fair. Jacob throws all four coins once. The number of heads that he obtains is denoted by the random variable X. The probability distribution table for X is as follows.

x	0	1	2	3	4
P(X=x)	$\frac{3}{80}$	а	b	С	$\frac{7}{80}$

(a)	Show that $a = \frac{1}{5}$ and find the values of b and c. [4]
( <b>b</b> )	Find $E(X)$ . [1]





Jacob throws all four coins together 10 times.

(c)	Find the probability that he obtains exactly one head on fewer than 3 occasions.	[3]
( <b>d</b> )	Find the probability that Jacob obtains exactly one head for the first time on the 7th or that he throws the 4 coins.	8th time [2]
	***	





# CHAPTER 4. DISCRETE RANDOM VARIABLES

# ${\bf Answer:}$

Question	Answer	Marks	Guidance
(a)	$a = P(1 \text{ head}) = 0.7 \times (0.5)^3 + 0.3 \times (0.5)^3 \times 3 = \frac{1}{5}$	B1	Clear statement of unevaluated correct calculation $=\frac{1}{5}$ . AG
	$b = 0.7 \times 0.5^{3} \times 3 + 0.3 \times 0.5^{3} \times 3 = \frac{3}{8}$ $c = 0.7 \times 0.5^{3} \times 3 + 0.3 \times 0.5^{3} = \frac{3}{10}$	M1	Clear statement of unevaluated calculation for either $b$ or $c$
	$c = 0.7 \times 0.5^3 \times 3 + 0.3 \times 0.5^3 = \frac{3}{10}$	A1	For either b or c correct
	$\left[orc = \frac{27}{40} - b\right]$	B1 FT	their $b$ + their $c = \frac{27}{40}$
		4	
(b)	$\left[ E(X) = \frac{3 \times 0 + 16 \times 1 + 30 \times 2 + 24 \times 3 + 7 \times 4}{80} = \right] \frac{176}{80} \text{ or } 2.2$	B1 FT	Correct or accept unsimplified calculation using their values for $b$ and $c$ seen (sum of probabilities = 1)
		1	
Question	Answer	Marks	Guidance
(c)	$[P(0, 1, 2) = ]^{10}C_0 \ 0.2^0 \ 0.8^{10} \ + {}^{10}C_1 \ 0.2^1 \ 0.8^9 \ + {}^{10}C_2 \ 0.2^2 \ 0.8^8$	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$ , for $0 \le x \le 10, \ 0 \le p \le 1$
	0.107374 + 0.268435 + 0.301989	A1	Correct expression, accept unsimplified leading to

Question	Answer	Marks	Guidance
(c)	$[P(0, 1, 2) = ]^{10}C_0 \ 0.2^0 \ 0.8^{10} \ + {}^{10}C_1 \ 0.2^1 \ 0.8^9 \ + {}^{10}C_2 \ 0.2^2 \ 0.8^8$	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$ , for $0 \le x \le 10, \ 0 \le p \le 1$
	0.107374 + 0.268435 + 0.301989	A1	Correct expression, accept unsimplified leading to final answer
	0.678	B1	$0.677$
	Alternative method for question 4(c)	4	
	$ \begin{bmatrix} 1 - \left[ ^{10}C_{10} \cdot 0 \cdot 2^{10} \cdot 0.8^{0} + ^{10}C_{9} \cdot 0 \cdot 2^{9} \cdot 0.8^{1} + ^{10}C_{8} \cdot 0 \cdot 2^{8} \cdot 0.8^{2} + ^{10}C_{7} \cdot 0 \cdot 2^{7} \cdot 0.8^{3} + ^{10}C_{6} \cdot 0 \cdot 2^{6} \cdot 0.8^{4} + ^{10}C_{5} \cdot 0 \cdot 2^{5} \cdot 0.8^{5} + ^{10}C_{4} \cdot 0 \cdot 2^{4} \cdot 0.8^{6} + ^{10}C_{3} \cdot 0 \cdot 2^{3} \cdot 0.8^{7} \right] $	Mi	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$ , for $0 < x < 10, 0 < p < 1$
		A1	Correct expression, accept unsimplified
	0.678	B1	$0.677$
		4	
(d)	$0.8^6 \times 0.2 + 0.8^7 \times 0.2 = 0.0524288 + 0.041943$	M1	$p^{l} \times (1-p) + p^{m} \times (1-p), l = 6, 7$ $m = l + 1, 0$
	0.0944	A1	0.09437 <b>&lt;</b> <i>p</i> <b>&lt;</b> 0.0944
	1	2	





 $197.\ 9709_s22_qp_52\ Q:\ 2$ 

A fair 6-sided die has the numbers 1, 2, 2, 3, 3, 3 on its faces. The die is rolled twice. The random variable X denotes the sum of the two numbers obtained.

(a)	Draw up the probability distribution table for $X$ .	[3]
		••••••
<b>(b)</b>	Find $E(X)$ and $Var(X)$ .	[3]
		••••••





# CHAPTER 4. DISCRETE RANDOM VARIABLES

#### Answer:

Question	Answer						Marks	Guidance
(a)	x 2 3 4 5 6		B1	Table with correct X values and at least one probability. Condone any additional X values if probability stated as 0.				
	p	1 36	$\frac{4}{36}$	10 36	$\frac{12}{36}$	$\frac{9}{36}$	В1	3 correct probabilities linked with correct outcomes. Accept 3 sf decimals.
		0.02778	0.1111	0.2778	0.3333	0.25	В1	2 further correct probabilities linked with correct outcomes. Accept 3 sf decimals.
							3	SC B1 for 5 probabilities ( $0 ) that sum to 1 with less than 3 correct probabilities.$

Question	Answer	Marks	Guidance							
(b)	If method FT from <i>their</i> incorrect (a), expressions for $E(X)$ and $Var(X)$ must be seen at the stage shown in <b>bold</b> (or less simplified) in the schen with all probabilities $\leq 1$ .									
	$\left[ E(X) = \frac{1 \times 2 + 4 \times 3 + 10 \times 4 + 12 \times 5 + 9 \times 6}{36} = \right] \frac{2 + 12 + 40 + 60 + 54}{36}$	M1	Accept unsimplified expression. May be calculated in variance. FT <i>their</i> table with 4 or more probabilities summing to $0.999 \le \text{total} \le 1 \ (0 \le p \le 1)$ .							
	$\left[ \operatorname{Var}(X) = \frac{1 \times 2^2 + 4 \times 3^2 + 10 \times 4^2 + 12 \times 5^2 + 9 \times 6^2}{36} - \left( their  \operatorname{E}(X) \right)^2 = \right]$ $\frac{1 \times 4 + 4 \times 9 + 10 \times 16 + 12 \times 25 + 9 \times 36}{36} - \left( their \frac{14}{3} \right)^2$ $\left[ \frac{4 + 36 + 160 + 300 + 324}{36} - \left( their \frac{14}{3} \right)^2 \right]$	M1	Appropriate variance formula using their $(E(X))^2$ value. FT their table with 3 or more probabilities $(0  which need not sum to 1 and the calculation in bold (or less simplified) seen.$							
	$E(X) = \frac{168}{36}, \frac{14}{3}, 4.67$ $Var(X) = \frac{10}{9}, 1\frac{1}{9}, 1.11, \frac{1440}{1296}$	A1	Answers for E(X) and $Var(X)$ must be identified. E(X) may be identified by correct use in Variance. Condone E, V, $\mu$ , $\sigma^2$ etc. If M0 earned SC B1 for identified correct final answers.							





198. 9709_s22_qp_53 Q: 3

The random	variable $X$	takes the	values -	-2, 1,	2, 3.	It is giv	en that	P(X =	= x) = $kx$	$x^2$ , where	e k is a
constant.											

(a)	Draw up the probability distribution table for $X$ , giving the probabilities as numerical fractions.
	[3]
	407
	69
<b>(b)</b>	Find $E(X)$ and $Var(X)$ .
	***







 ${\bf Answer:}$ 

Question			Ans	swer	Marks	Guidance		
(a)	$k = \frac{1}{18} (4k + k + 4k + 9k = 18k = 1)$							SOI
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					M1	Table with correct $x$ values and at least one probability accurate using their $k$ . Values need not be in order, lines may not be drawn, may be vertical, $x$ and $P(X=x)$ may be omitted. Condone any additional $X$ values if probability stated as 0.	
					A1	Remaining probabilities correct.		
Question	Answer						Marks	Guidance
(b)	$\[ E(X) = \frac{4 \times -2 + 1 \times 1 + 4 \times 2 + 9 \times 3}{18} = \] $ $= \frac{-8 + 1 + 8 + 27}{18}$						M1	-8k + k + 8k + 27k May be implied by use in Variance. Accept unsimplified expression. FT <i>their</i> table if probabilities sum to 1 or 0.999. SC B1 $28k$ .
	$\left[\operatorname{Var}(X) = \frac{4 \times (-2)^2 + 1 \times 1^2 + 4 \times 2^2 + 9 \times 3^2}{18} - \left(their \operatorname{E}(X)\right)^2 = \right]$ $= \frac{16 + 1 + 16 + 81}{18} - \left(their \frac{28}{18}\right)^2$							$16k + k + 16k + 81k - (their  \text{mean})^2$ FT their table even if probabilities not summing to 1.  Note: If table is correct, $\frac{114}{18} - (their  \text{E}(X))^2$ M1.  SC B1 $114k - (their  \text{mean})^2$ .
	$E(X) = \frac{14}{9}, 1$	$1\frac{5}{9}$ , 1.56, Va	$r(X) = \frac{317}{81},$	$3\frac{74}{81}$ , 3.91	A1	Answers for $E(X)$ and $Var(X)$ must be identified. 3.91 $\leq Var(X) \leq 3.914$		
					- 4	3		





 $199.\ 9709_s22_qp_53\ Q:\ 4$ 

(a)	Find the probability that he obtains a 4 for the first time on his 8th throw.	[1]
		•••••
		•••••
<b>(b)</b>	Find the probability that it takes no more than 5 throws for Ramesh to obtain a 4.	[2]
		•••••
		•••••
		•••••
	nesh now repeatedly throws two ordinary fair 6-sided dice at the same time. Each time he two numbers that he obtains.	adds
(c)	For 10 randomly chosen throws of the two dice, find the probability that Ramesh obtains a of less than 4 on at least three throws.	[4]
		•••••
		•••••







Question	Answer	Marks	Guidance
(a)	$\left[ \left( \frac{5}{6} \right)^7 \times \frac{1}{6} = \right] 0.0465, \frac{78125}{1679616}$	В1	0.0465 ≤ p < 0.04652
		1	
Question	Answer	Marks	Guidance
(b)	$P(X < 6) = 1 - \left(\frac{5}{6}\right)^5 \text{ or } \frac{1}{6} + \left(\frac{5}{6}\right)\left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^2 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^3 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right)$	M1	$1 - p^n$ , $0 , n = 4, 5, 6 or sum of 4, 5 or 6 terms p \times (1 - p)^n for n = 0,1,2,3,4(5).$
	0.598, <u>4651</u> 7776	A1	
		2	
(c)	[Probability of total less than 4 is] $\frac{3}{36}$ or $\frac{1}{12}$	B1	SOI
	$\begin{split} &[1-P(0,1,2)]\\ &=1-({}^{10}C_0\left(\frac{1}{12}\right)^0\!\left(\frac{11}{12}\right)^{\!10}+{}^{10}C_1\left(\frac{1}{12}\right)^{\!1}\!\!\left(\frac{11}{12}\right)^9+{}^{10}C_2\left(\frac{1}{12}\right)^2\!\!\left(\frac{11}{12}\right)^8) \end{split}$	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$ , for $0 < x < 10$ , $0 .$
	1 - (0.418904 + 0.380822 + 0.155791)	A1 FT	Correct expression. Accept unsimplified.
	0.0445	A1	$0.04448 \leqslant p \leqslant 0.0445$
	Palpacai		





 $200.\ 9709_m21_qp_52\ Q:\ 1$ 

A fair spinner with 5 sides numbered 1, 2, 3, 4,	5 is spun repeatedly.	The score on ea	ach spin is the
number on the side on which the spinner lands.			

(a)	Find the probability that a score of 3 is obtained for the first time on the 8th spin.	[1]
		•••••
		•••••
		•••••
<b>(b)</b>	Find the probability that fewer than 6 spins are required to obtain a score of 3 for the first	time. [2]
	-00	
	**	
		•••••





Question	Answer	Marks	Guidance
(a)	$\left[ \left( \frac{4}{5} \right)^7 \frac{1}{5} = \right] \frac{16384}{390625} \text{ or } 0.0419[43]$	В1	Evaluated, final answer.
		1	
(b)	$1 - \left(\frac{4}{5}\right)^5 \text{ or } \frac{1}{5} + \frac{4}{5} \times \frac{1}{5} \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5}$	M1	$ 1-p^n n = 5.6 $ or $p+pq+pq^2+pq^3+pq^4 \ (+pq^5) $ $0  Sum of a geometric series may be used.$
	2101 3125 or 0.672[32]	A1	Final answer.
	Alternative method for question 1(b)		
	[P(at least 1 three scored in 5 throws) =] $\left(\frac{1}{5}\right)^{5} + {}^{5}C_{4}\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right) + {}^{5}C_{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{2} + {}^{5}C_{2}\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{3} + {}^{5}C_{4}\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)^{4}$	M1	$(p)^5 + {}^5C_4(p)^4(q) + {}^5C_3(p)^3(q)^2 + {}^5C_2(p)^2(q)^3 + {}^5C_1(p)(q)^4$ or $(p)^6 + {}^6C_5(p)^5(q) + {}^6C_4(p)^4(q)^2 + {}^6C_3(p)^3(q)^3 + {}^6C_2(p)^2(q)^4 + {}^6C_1(p)(q)^5, \ 0  At least first, last and one intermediate term is required to show pattern of terms if not all terms stated.$
	2101 3125 or 0·672[32]	A1	Final answer.
		2	
	·: A Palpa		





 $201.\ 9709_m21_qp_52\ \ Q:\ 4$ 

The random variable X takes the values 1, 2, 3, 4 only. The probability that X takes the value x is kx(5-x), where k is a constant.

Draw up the probability distribution table for $X$ , in terms of $k$	•
	.0,
	20
Show that $Var(X) = 1.05$ .	
(3)	
40	
A0'0'	







Question				Ans	wer		Marks	Guidance
(a)	x prob	1 4k	2 6k	3 6k	4 4k		B1	Table with $\times$ values and one correct probability expressed in terms of $k$ .  Condone any additional $\times$ values if probability stated as 0.
						1	B1	Remaining 3 probabilities correct expressed in terms of $k-$ condone if the first correct probability is not in table.
							2	
(b)	[4k+6k	+ 6k + 4k	=1] k =	$\frac{1}{20}$ (= 0	0.05)		B1	Correct value for k SOI. May be calculated in <b>4(a)</b> . <b>SC B1</b> If denominator 20k used throughout.
	E(X) =  (= 2.5)	$1 \times \frac{4}{20} + 2$	$2 \times \frac{6}{20} + 3$	$\times \frac{6}{20} + 4$	$\times \frac{4}{20} = \frac{1}{2}$	$\frac{4}{20} + \frac{12}{20} + \frac{18}{20} + \frac{16}{20}$	M1	Accept unsimplified expression. Condone $4k + 12k + 18k + 16k$ . May be implied by use in Variance expression. Special ruling: Allow use of denominator $20k$ .
						$\times \frac{4}{20} - \left(their 2\frac{1}{2}\right)^2$	М1	Appropriate variance formula with <i>their</i> numerical probabilities using <i>their</i> $(E(X))^2$ , accept unsimplified, with <i>their k</i> substituted.
	= (4 + 24) Or $(1-2.5)$					$\frac{6}{2} \times \frac{6}{20} + (4 - 2.5)^2 \times \frac{4}{20}$		<b>Special ruling:</b> If denominator $20k$ used throughout, accept appropriate variance formula in terms of $k$ .
	1.05	20		20		20 , 20	A1	AG, NFWW.
	1.03						4	AG, NFW W.
	•••				2	a Ca	arr	
	•	,						





 $202.\ 9709_s21_qp_51\ \ Q:\ 7$ 

Sharma knows that she has 3 tins of carrots, 2 tins of peas and 2 tins of sweetcorn in her cupboard. All the tins are the same shape and size, but the labels have all been removed, so Sharma does not know what each tin contains.

Sharma wants carrots for her meal, and she starts opening the tins one at a time, chosen randomly, until she opens a tin of carrots. The random variable X is the number of tins that she needs to open.

(a)	Show that $P(X = 3) = \frac{6}{35}$ .	[2]
(b)	Draw up the probability distribution table for $X$ .	[4





# CHAPTER 4. DISCRETE RANDOM VARIABLES

Find $Var(X)$ .	[3]
	29
×	
40	





Question	Answer	Marks	Guidance
(a)	$P(X=3) = \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5}$	M1	$\frac{m}{7} \times \frac{n}{6} \times \frac{o}{5}$ used throughout. condone use of $\frac{1}{2}$
	$\frac{6}{35}$	A1	AG. The fractions must be identified, e.g. P(NC, NC, C), may be seen in a tree diagram.
		2	

Question	Answer	Marks	Guidance
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	Table with <i>x</i> values and at least one probability Condone any additional <i>x</i> values if probability stated as 0.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	One correct probability other than $X = 3$ linked to the correct outcome
		B1	Two further correct probabilities other than $X = 3$ seen linked to the correct outcome
		B1FT	All probabilities correct, or at least 4 probabilities summing to 1
		4	
(c)	$[E(X) = 1 \times \frac{15}{35} + 2 \times \frac{10}{35} + 3 \times \frac{6}{35} + 4 \times \frac{3}{35} + 5 \times \frac{1}{35}]$ $E(X) = \frac{15 + 20 + 18 + 12 + 5}{35} \left[ = \frac{70}{35} = 2 \right]$	M1	At least 4 correct terms FT <i>their</i> values in (a) with probabilities summing to 1 May be implied by use in Variance, accept unsimplified expression.
	$\operatorname{Var}(X) = \left[ \frac{1^2 \times 15 + 2^2 \times 10 + 3^2 \times 6 + 4^2 \times 3 + 5^2 \times 1}{35} - 2^2 = \right]$ $\frac{15 + 40 + 54 + 48 + 25}{35} - 2^2$	MI	Appropriate variance formula using <i>their</i> $(E(X))^2$ . FT <i>their</i> table accept probabilities not summing to 1.
	$\[ = \frac{182}{35} - 4 \] = \frac{6}{5}$	A1	<b>N.B.</b> If method FT for M marks from <i>their</i> incorrect (b), expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities $<1$
	~~	3	







 $203.\ 9709_s21_qp_52\ Q{:}\ 1$ 

An ordinary fair die is thrown repeatedly until a 5 is obtained.	The number of throws taken is denoted
by the random variable $X$ .	

(a)	Write down the mean of $X$ .	[1]
		•••••
( <b>b</b> )	Find the probability that a 5 is first obtained after the 3rd throw but before the 8th throw.	[2]
		· • • • • • • • • • • • • • • • • • • •
(c)	Find the probability that a 5 is first obtained in fewer than 10 throws.	[2]
		•••••
		•••••
		•••••
		· <b>····</b>





Question	Answer	Marks	Guidance
(a)	6	B1	www
		1	
(b)	$\left[ \left( \frac{5}{6} \right)^3 \frac{1}{6} + \left( \frac{5}{6} \right)^4 \frac{1}{6} + \left( \frac{5}{6} \right)^5 \frac{1}{6} + \left( \frac{5}{6} \right)^6 \frac{1}{6} \right]$	M1	$p^{3}(1-p) + p^{4}(1-p) + p^{5}(1-p) + p^{6}(1-p), 0$
	0.300 (0.2996)	A1	At least 3s.f. Award at most accurate value.
	Alternative method for Question 1(b)		
	$\left(\frac{5}{6}\right)^3 - \left(\frac{5}{6}\right)^7$	M1	$p^3 - p^7, 0$
	0.300 (0.2996)	A1	At least 3s.f. Award at most accurate value.
		2	
(c)	$1-\left(\frac{5}{6}\right)^9$	M1	$1 - p^n$ , $0 , n = 9, 10$
	0.806	A1	
	Alternative method for Question 1(c)		
	$\frac{1}{6} + \frac{1}{6} \left(\frac{5}{6}\right) + \frac{1}{6} \left(\frac{5}{6}\right)^2 + \dots + \frac{1}{6} \left(\frac{5}{6}\right)^8$	M1	$\begin{array}{lll} p+p(1-p)+p(1-p)^2+p(1-p)^3+p(1-p)^4+p(1-p)^5+p(1-p)^6+p(1-p)^7+p(1-p)^8+p(1-p)^9), \ 0< p<1 \\ \text{As per answer for minimum terms shown} \end{array}$
	0.806	A1 2	<b>10</b> ,
	Palpa		





 $204.\ 9709_s21_qp_52\ Q\hbox{:}\ 4$ 

A fair spinner has sides numbered 1, 2, 2. Another fair spinner has sides numbered -2, 0, 1. Each spinner is spun. The number on the side on which a spinner comes to rest is noted. The random variable X is the sum of the numbers for the two spinners.

(a)	Draw up the probability distribution table for $X$ .	[3]
		<b>)</b>
	C io	
( <b>b</b> )	Find $E(X)$ and $Var(X)$ .	[3]
		•••••
	**	





(a)							Marks	Guidance
	X	-1	0	1	2	3	B1	Table with correct X values and at least one probability Condone any additional X values if probability stated as 0.
	P(X)	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{3}{9}$	$\frac{2}{9}$	В1	2 correct probabilities linked with correct outcomes, may not be in table.
								3 further correct probabilities linked with correct outcomes, may not be in table.
								SC if less than 2 correct probabilities seen, award SCB1 for sum of <i>their</i> 4 or 5 probabilities in table = 1
							3	
(b)	$\begin{bmatrix} E(X) \\ \frac{-1+1+}{9} \end{bmatrix}$	6+6	0×2)+1×1 9	+2×3+3×	=		M1	May be implied by use in variance, accept unsimplified expression.  FT <i>their</i> table if <i>their</i> 3 or more probabilities sum to 1 or 0.999
$ \frac{9}{[\text{Var}(X) =]} \left[ \frac{-1^2 \times 1 + (0^2 \times 2) + 1^2 \times 1 + 2^2 \times 3 + 3^2 \times 2}{9} - (\text{their } E(X))^2 \right] \\ \frac{1 + 0 + 1 + 12 + 18}{9} - (\text{their } E(X))^2 $							M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table even if <i>their</i> 3 or more probabilities not summing to 1.
	$E(X) = \frac{4}{3}$ or 1.33 and $Var(X) = \frac{16}{9}$ or 1.78						A1	Answers for $E(X)$ and $Var(X)$ must be identified
								<b>N.B.</b> If method FT for M marks from <i>their</i> incorrect <b>(b)</b> , expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities $<1$
	••			8	a s	200		





 $205.\ 9709_s21_qp_53\ Q:\ 2$ 

The random variable X can take only the values -2, -1, 0, 1, 2. The probability distribution of X is given in the following table.

х	-2	-1	0	1	2
P(X=x)	p	p	0.1	q	q

Given that $P(X \ge 0) = 3P(X < 0)$ , find the values of p and q.	[4]
.0	<u> </u>
•••	





Question	Answer	Marks	Guidance
2	p + p + 0.1 + q + q = 1	B1	Sum of probabilities = 1
	$\boxed{0.1 + 2q = 3(2p)}$	B1	Use given information
	Attempt to solve two correct equations in $p$ and $q$	М1	<b>Either</b> use of Substitution method to form a single equation in either $p$ or $q$ and finding values for both unknowns. <b>Or</b> use of Elimination method by writing both equations in same form (usually $ap + bq = c$ ) and $+$ or $-$ to find an equation in one unknown and finding values for both unknowns.
	$p = \frac{1}{8}$ or 0.125 and $q = \frac{13}{40}$ or 0.325	A1	CAO, both WWW
		4	







 $206.\ 9709_s21_qp_53\ Q:\ 4$ 

Three fair	r six-sided	dice, each	with faces	s marked	1, 2, 3,	4, 5, 6,	are thrown	n at the s	same time
repeatedly	y. For a sin	gle throw o	of the three	dice, the	score is the	he sum o	f the numb	ers on the	top faces

(a)	Find the probability that the score is 4 on a single throw of the three dice.	[3]
		•••••
		•••••
		•••••
	639	•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •





Find the probability that a score of 18 is obtained for the first time on the 5th thr dice.	[3]
	•••••
	Í
. 22	••••••
	•••••
	•••••
	•••••
	•••••
639	
	••••••
	•••••
	•••••







Question	Answer	Marks	Guidance
(a)	[Possible cases: 1 1 2, 1 2 1, 2 1 1] $Probability = \left(\frac{1}{6}\right)^3 \times 3$	M1	$\left(\frac{1}{6}\right)^3 \times k$ , where $k$ is an integer.
	(6)	M1	Multiply a probability by 3, not +, – or ÷
	$\frac{1}{72}$	A1	Accept $\frac{3}{216}$ or 0.0138 or 0.0139
		3	
(b)	$P(18) = \left(\frac{1}{6}\right)^3 \left[ = \frac{1}{216} \right]$	В1	
	P(18 on 5th throw) = $\left(\frac{215}{216}\right)^4 \times \frac{1}{216}$	M1	$(1-p)^4p$ , $0 < their p < 1$
	0.00454	A1	
		3	, Ø
	Paleaca		





 $207.\ 9709_w21_qp_51\ Q:\ 1$ 

Two	fair coi	ns are	thrown	at the	same	time.	The random	variable	X is	the	number	of	throws	of the
two	coins rec	uired	to obtai	in two	tails a	t the sa	ame time.							

(a)	Find the probability that two tails are obtained for the first time on the 7th throw.	[2]
	<u> </u>	
1.		[0]
(D)	Find the probability that it takes more than 9 throws to obtain two tails for the first time.	[2]
		•••••
	***************************************	•••••
		•••••





Question	Answer	Marks	Guidance
(a)	$\left(\frac{3}{4}\right)^6 \frac{1}{4}$	M1	$(1-p)^6 p, 0$
	0.0445, <del>729</del> <del>16384</del>	A1	
		2	
(b)	$\left(\frac{3}{4}\right)^9$	M1	$\left(\frac{3}{4}\right)^n \text{ or } p^n, \ 0$
	$0.0751, \frac{19683}{262144}$	A1	
		2	







 $208.\ 9709_w21_qp_51\ Q:\ 4$ 

A fair spinner has edges numbered 0, 1, 2, 2. Another fair spinner has edges numbered -1, 0, 1. Each spinner is spun. The number on the edge on which a spinner comes to rest is noted. The random variable X is the sum of the numbers for the two spinners.

(a)	Draw up the probability distribution table for $X$ .	[3]
		<u></u>
		<b>)</b>
	2	
<b>(b)</b>	Find $Var(X)$ .	[3]





 ${\bf Answer:}$ 

Question	Answer	Marks	Guidance		
(a)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	В1	0     1     2     2       -1     -1     0     1     1       0     0     1     2     2       1     1     2     3     3		
			Table with $x$ values and at least one probability substituted, $0 . Condone any additional x values if probability stated as 0.$		
		B1	1		
		B1	All probabilities correct (accept to 3sf).  SC if less than 2 correct probabilities: SC B1 4 or 5 probabilities summing to one.		
		3			
(b)	$E(X) = -\frac{1}{12} + \frac{4}{12} + \frac{6}{12} + \frac{6}{12} \left[ = \frac{15}{12} \right]$	M1	May be implied by use in Variance, accept unsimplified expression. Probabilities must sum to $1 \pm 0.001$ .		
	Var $(X) = \frac{1}{12} + 0 + \frac{4}{12} + \frac{12}{12} + \frac{18}{12} - \left(\frac{15}{12}\right)^2$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ . <b>FT</b> accept probabilities not summing to 1.  Condone $\frac{35}{12} - \left(\frac{15}{12}\right)^2 or \frac{35}{12} - \frac{25}{9}$ from correct table.		
	$\left[\frac{35}{12} - \frac{25}{16} = \right] \frac{65}{48}, 1.35$	A1	www		
Palpacall					





 $209.\ 9709_w21_qp_52\ Q:\ 3$ 

A bag contains 5 yellow and 4 green marbles.	Three marbles are selected at random from the bag,
without replacement.	

	.0,
	Ŏ~
andom variable $X$ is the number of yellow marbles selected.	
andom variable $X$ is the number of yellow marbles selected.  Draw up the probability distribution table for $X$ .	[3
Draw up the probability distribution table for $X$ .	
Draw up the probability distribution table for $X$ .	
Draw up the probability distribution table for $X$ .	
Draw up the probability distribution table for $X$ .	
Draw up the probability distribution table for $X$ .	
Draw up the probability distribution table for $X$ .	[3]





# CHAPTER 4. DISCRETE RANDOM VARIABLES

	20
c)	Find $E(X)$ . [1]





Question	Answer	Marks	Guidance
(a)	For one yellow: YGG + GYG +GGY $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times 3$		$\frac{a}{9} \times \frac{b}{8} \times \frac{c}{7}$ , $0 < a,b,c$ integers $\leq 5$ , for one arrangement.
			Their three-factor probability $\times$ 3, 3C_1 , 3C_2 or $^3P_{1,}$ (or repeated adding) no additional terms.
	$\left[\frac{180}{504} = \right] \frac{5}{14}$	A1	AG. Convincingly shown, including identifying possible scenarios, may be on tree diagram WWW.
		3	
	Alternative method for question 3(a)		
	$\frac{^5C_1 \times ^4C_2}{^9C_3}$	M1	$\frac{{}^{5}C_{1} \times {}^{4}C_{2}}{{}^{9}C_{r}}, r = 2, 3, 4$
		M1	$\frac{{}^{5}C_{s} \times {}^{4}C_{t}}{{}^{9}C_{3}}, s+t=3$
	$\left[\frac{30}{84}\right] = \frac{5}{14}$	A1	AG. Convincingly shown, WWW.
		3	10)
Question	Answer	Marks	Guidance
(b)	X         0         1         2         3           P(X)         24         180         240         60	B1	Table with correct $X$ values and one correct probability inserted appropriately.  Condone any additional $X$ values if probability stated as 0.
	$\begin{bmatrix} P(X) & \frac{24}{504} & \frac{180}{504} & \frac{240}{504} & \frac{60}{504} \\ \begin{bmatrix} = \frac{1}{21}, \\ 0.0476 \end{bmatrix} & \begin{bmatrix} = \frac{5}{14}, \\ 0.357 \end{bmatrix} & \begin{bmatrix} = \frac{10}{21}, \\ 0.476 \end{bmatrix} & \begin{bmatrix} = \frac{5}{42}, \\ 0.119 \end{bmatrix}$	B1	Second identified correct probability, may not be in table.
		B1	All probabilities identified and correct .  SC if less than 2 correct probabilities or X value(s) omitted:  SC B1 3 or 4 probabilities summing to one.
		3	<b>~</b>
(c)	$[E(X) =] \frac{840}{504} \cdot \frac{5}{3}, 1.67$	B1	OE Must be evaluated. SC B1 FT correct unsimplified expression from incorrect 3(b) using at least 3 probabilities, $0 .$
		1	







210.  $9709_{2} = 21_{2} = 52$  Q: 5

In a certain region, the probability that any given day in October is wet is 0.16, independently of other
days.

(a)	Find the probability that, in a 10-day period in October, fewer than 3 days will be wet.	[3]
		•••••
		•••••
		•••••
		•••••
	_0	
	29	
<b>(b</b> )	Find the probability that the first wet day in October is 8 October.	[2]
<b>(b)</b>	Find the probability that the first wet day in October is 8 October.	[2]
	C i c	
	120	
(c)	For 4 randomly chosen years, find the probability that in exactly 1 of these years the first w in October is 8 October.	et day [2]





$[P(0, 1, 2) =] {}^{10}C_0 0.16^0 0.84^{10} + {}^{10}C_1 0.16^1 0.84^9 + {}^{10}C_2 0.16^2 0.84^8$	Marks	Guidance
[P(0, 1, 2) -] C ₀ 0.16 0.84 + C ₁ 0.16 0.84 + C ₂ 0.16 0.84	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10$ , any $p$ .
[=0.17490 + 0.333145 + 0.28555]	A1	Correct unsimplified expression, or better.
0.794	A1	$0.7935 , mark at most accurate. If M0 scored, SC B1 for final answer 0.794.$
	3	
$(0.84)^7 0.16$	M1	$(1-p)^7 p, 0$
0.0472	A1	0.0472144 to at least 3sf.
	2	
Answer	Marks	Guidance
$4 \times 0.0472 \times (1 - 0.0472)^3$	M1	$4 \times q(1-q)^3$ , $q = their$ (b) or correct.
0.163	A1	$0.163 \le p \le 0.1634$ , mark at most accurate from <i>their</i> probability to at least 3sf.
	2	
000		
	0.0472  Answer $4 \times 0.0472 \times (1 - 0.0472)^3$ 0.163	





 $211.\ 9709_w21_qp_53\ Q:\ 6$ 

In a game, Jim throws three darts at a board. This is called a 'turn'. The centre of the board is called the bull's-eye.

The random variable X is the number of darts in a turn that hit the bull's-eye. The probability distribution of X is given in the following table.

x	0	1	2	3
P(X = x)	0.6	p	q	0.05

It is given that E(X) = 0.55.

(a)	Find the values of $p$ and $q$ .	[4]
		<b>%</b>
		••••••
( <b>b</b> )	Find $Var(X)$ .	[2]





т.	•		C	. • . •	1 1	. 11	. 1	. 1	1 .	1	
lim	10 1	nracticina	tor a com	natition	and he	repeatedly	I throuse	throo	darte a	t tha	hoard
J 1111	10	Diacusing	ioi a com	ocuuon	and no	rebeateur	unows	uncc	uai is a	t the	ooaru

This the probability that $A = 1$ in at least 3 of 12 failedning chosen turns.	
	•••••
	<u></u>
	<i>3</i>
G	
	•••••
Find the probability that Jim first succeeds in hitting the bull's-eye with all three	darts on his 9th
turn.	[1]
***	
	•••••
	•••••







Question	Answer	Marks	Guidance
(a)	p+q+0.65=1	B1	Sum of probabilities = 1.
	p + 2q + 0.15 = 0.55	B1	Use given information.
	Solve 2 linear equations	M1	Either a single expression with one variable eliminated formed or two expressions with both variables on the same side seen with at least one variable value stated.
	$p = 0.3, \frac{3}{10},  q = 0.05, \frac{1}{20}$	A1	CAO, both WWW If M0 with correct answers SC B1.
		4	
(b)	$Var(X) = their 0.3 + 4 \times their 0.05 + 9 \times 0.05 - 0.55^{2}$	M1	Appropriate variance formula including $(E(X))^2$ , accept unsimplified.
	$0.6475 \left[ \frac{259}{400} \right]$	A1	CAO (must be exact).
		2	
(c)	$1 - P(0, 1, 2) = 1 - ({}^{12}C_0 \ 0.3^0 \ 0.7^{12} + {}^{12}C_1 \ 0.3^1 \ 0.7^{11} + {}^{12}C_2 \ 0.3^2 \ 0.7^{10})$	M1	One correct term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$ , $0 .$
	1 - (0.01384 + 0.07118 + 0.16779)	A1FT	Correct unsimplified expression, or better in final answer. Unsimplified expression must be seen to <b>FT</b> <i>their p</i> from <b>6(a)</b> or <b>correct</b> .
	0.747	A1	
		3	
(d)	$(0.95)^8 \times 0.05 = 0.0332$ or $0.95^8 - 0.95^9 = 0.0332$	B1	Evaluated.

212	0700	m20	an	50	$\Omega$ .	9
Z1Z.	9709	mzv	ab	oz	W:	

An ordinary fair die is thrown repeatedly until a 1 or a 6 is obtained.

)	Find the probability that it takes at least 3 throws but no more than 3 throws to obtain a 1 or a	[3]
	**	





On another occasion, this die is thrown 3 times. The random variable X is the number of times that a 1 or a 6 is obtained.

(b)	Draw up the probability distribution table for $X$ .	[3]
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
(c)	Find $E(X)$ .	[2]







 ${\bf Answer:}$ 

Question	Answer	Marks	Guidance
(a)	$\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^3 + \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^4$	M1	One correct term with $0$
	$=\frac{4}{27} + \frac{8}{81} + \frac{16}{243} \left( = \frac{2432}{7776} \right)$	A1	Correct expression, accept unsimplified
	$=\frac{76}{243} \text{ or } 0.313$	A1	
		3	

Question	Answer						Marks	Guidance
(b)	P(x)	$\begin{array}{c c} 0 \\ \hline \frac{8}{27} \end{array}$	1 12 27	$\frac{2}{\frac{6}{27}}$	$\frac{1}{27}$		В1	Probability distribution table with correct values of <i>x</i> , no additional values unless with probability of 0 stated, at least one non-zero probability included
	$P(0) = \left(\frac{2}{3}\right)^3$						B1	1 correct probability seen (may not be in table) or 3 or 4 non-zero probabilities summing to 1
	$P(1) = \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^2 \times 3$						B1	All probabilities correct
	$P(2) = \left(\frac{2}{3}\right) \left(\frac{1}{3}\right)^2 \times 3$ $P(3) = \left(\frac{1}{3}\right)^3$							
	$P(3) = \left(\frac{1}{3}\right)$							
							3	
(c)	$E(X) = \left[0 \times \frac{8}{27}\right] + 1 \times \frac{12}{27} + 2 \times \frac{6}{27} + 3 \times \frac{1}{27}$						M1	Correct method from <i>their</i> probability distribution table with at least 3 terms, $0 \le their P(x) \le 1$ , accept unsimplified
	$= \left[\frac{0}{27}\right] + \frac{12}{27} + \frac{12}{27} + \frac{3}{27}$							
	= 1					200	A1	
							2	





 $213.\ 9709_s20_qp_51\ Q\!:\, 1$ 

The score when two fair six-sided dice are thrown is the sum of the two numbers on the upper face
---------------------------------------------------------------------------------------------------

(a)	Show that the probability that the score is 4 is $\frac{1}{12}$ .	[1]
The deno	two dice are thrown repeatedly until a score of 4 is obtained. The number of throws to ted by the random variable $X$ .	aken is
(b)	Find the mean of $X$ .	[1]
		•••••
(c)	Find the probability that a score of 4 is first obtained on the 6th throw.	[1]
	000	
( <b>d</b> )	Find $P(X < 8)$ .	[2]





Question	Answer	Marks
(a)	Prob of 4 (from 1,3, 3,1 or 2,2) = $\frac{3}{36} = \frac{1}{12}$ AG	В1
		1
(b)	$Mean = \frac{1}{\frac{1}{12}} = 12$	B1
		1
(c)	$\left(\frac{11}{12}\right)^5 \times \frac{1}{12} = 0.0539 \text{ or } \frac{161051}{2985984}$	B1
		1
(d)	$1 - \left(\frac{11}{12}\right)^7$	M1
	0.456 or \frac{16344637}{35831808}	A1
		2
	APalpacamino	





 $214.\ 9709_s20_qp_51\ Q{:}\ 3$ 

(a)

A	company produces small boxes of sweets that contain 5 jellies and 3 chocolates.	Jemeel chooses
3	sweets at random from a box.	

Draw up the probability distribution table for the number of jellies that Jemeel chooses.	[4]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
***	•••••
	•••••
	•••••
	•••••
	•••••
	••••••





# CHAPTER 4. DISCRETE RANDOM VARIABLES

The company also produces large boxes of sweets. For any large box, the probability that it contains more jellies than chocolates is 0.64. 10 large boxes are chosen at random.

						•••••
			• • • • • • • • • • • • • • • • • • • •			
						•••••
	•••••					
			• • • • • • • • • • • • • • • • • • • •	•••••		•••••
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	<u>. []</u>	
						<b>)</b>
				X		
••••					<b>*</b>	
				S	•	
				<b></b>		
•••••						
			• • • • • • • • • • • • • • • • • • • •			
	- 4					
			• • • • • • • • • • • • • • • • • • • •			•••••
	~0					
	•••••		• • • • • • • • • • • • • • • • • • • •	•••••		•••••
**						
	<del></del>	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••		•••••
	•					
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••••		•••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••
						•••••
••••						
•••••						





(a) $ \frac{x}{x} = 0 = 1 = 2 = 3 $ Probability $ \frac{1}{56} = \frac{15}{56} = \frac{30}{56} = \frac{10}{56} $ (B1 for probability distribution table with correct outcome values) $ P(0) = \frac{3}{8} \times \frac{7}{7} \times \frac{1}{6} = \frac{1}{56} $ $ P(1) = \frac{3}{8} \times \frac{7}{7} \times \frac{3}{6} \times 3 = \frac{15}{56} $ $ P(2) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} = \frac{36}{56} $ $ P(3) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} = \frac{10}{56} $ (M1 for denominator $8 \times 7 \cdot 6$ ) $ Any one probability correct (with correct outcome) $ All probabilities correct	Marks	Answer	ion								
(B1 for probability distribution table with correct outcome values) $P(0) = \frac{3}{8} \times \frac{2}{7} \times \frac{1}{6} = \frac{1}{56}$ $P(1) = \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times 3 = \frac{15}{56}$ $P(2) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times 3 = \frac{30}{56}$ $P(3) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} = \frac{10}{56}$ (M1 for denominator $8 \times 7 \times 6$ )  Any one probability correct (with correct outcome)  All probabilities correct $1 - P(8, 9, 10) = 1 - \left[ {}^{10}C_{8} 0.64^{8} 0.36^{2} + {}^{10}C_{9} 0.64^{9} 0.36^{1} + 0.64^{10} \right]$ $1 - (0.164156 + 0.064852 + 0.11529)$ $0.759$	Bi	x 0 1 2 3	)								
$P(0) = \frac{3}{8} \times \frac{2}{7} \times \frac{1}{6} = \frac{1}{56}$ $P(1) = \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times 3 = \frac{15}{56}$ $P(2) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times 3 = \frac{30}{56}$ $P(3) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} = \frac{10}{56}$ (M1 for denominator $8 \times 7 \times 6$ )  Any one probabilities correct (with correct outcome)  All probabilities correct $1 - P(8, 9, 10) = 1 - \left[ {}^{10}C_{8} \cdot 0.64^{8} \cdot 0.36^{2} + {}^{10}C_{9} \cdot 0.64^{9} \cdot 0.36^{1} + 0.64^{10} \right]$ $1 - (0.164156 + 0.064852 + 0.11529)$ $0.759$		bility $\frac{1}{56}$ $\frac{15}{56}$ $\frac{30}{56}$ $\frac{10}{56}$	Pro								
$P(1) = \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times 3 = \frac{15}{56}$ $P(2) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times 3 = \frac{30}{56}$ $P(3) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} = \frac{10}{56}$ (M1 for denominator $8 \times 7 \times 6$ ) Any one probability correct (with correct outcome)  All probabilities correct $1 - P(8, 9, 10) = 1 - \left[ {}^{10}C_{8} 0.64^{8} 0.36^{2} + {}^{10}C_{9} 0.64^{9} 0.36^{1} + 0.64^{10} \right]$ $1 - (0.164156 + 0.064852 + 0.11529)$ $0.759$		(B1 for probability distribution table with correct outcome values)									
All probabilities correct  (b) $1 - P(8, 9, 10) = 1 - \left[ {}^{10}C_8  0.64^8 0.36^2 + {}^{10}C_9  0.64^9 0.36^1 + 0.64^{10} \right]$ $1 - (0.164156 + 0.064852 + 0.11529)$ $0.759$	MI	$\frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times 3 = \frac{15}{56}$ $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times 3 = \frac{30}{56}$ $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} = \frac{10}{56}$	P(1) P(2) P(3)								
(b) $1 - P(8, 9, 10) = 1 - \left[ {}^{10}C_8  0.64^8 0.36^2 + {}^{10}C_9  0.64^9 0.36^1 + 0.64^{10}} \right]$ $1 - (0.164156 + 0.064852 + 0.11529)$ $0.759$	A1	ne probability correct (with correct outcome)	Any								
1 – (0.164156 + 0.064852 + 0.11529) 0.759	A1	babilities correct	All p								
1 – (0.164156 + 0.064852 + 0.11529) 0.759	4										
0.759	Mi	$(9, 10) = 1 - \left[ {}^{10}C_8  0.64^8  0.36^2 + {}^{10}C_9  0.64^9  0.36^1 + 0.64^{10} \right]$	) 1-P								
	Mi	164156 + 0.064852 + 0.11529)	1-(								
Palpa	A1		0.75								
APalpa Calli	3										
•		Palpacalli									





 $215.\ 9709_s20_qp_52\ Q\hbox{:}\ 5$ 

A fair three-sided spinner has sides numbered 1, 2, 3. A fair five-sided spinner has sides numbered 1, 1, 2, 2, 3. Both spinners are spun once. For each spinner, the number on the side on which it lands is noted. The random variable X is the larger of the two numbers if they are different, and their common value if they are the same.

(a)	Show that $P(X = 3) = \frac{7}{15}$ .	[2]
		<b>~</b>
	. 29	)
		••••••
<b>(b)</b>	Draw up the probability distribution table for $X$ .	[3]
	•••	
		•••••
		•••••





c)	Find $E(X)$ and $Var(X)$ . [3]
	72





 ${\bf Answer:}$ 

Question	Answe	er						Marks		
(a)		1	1	2	2	3		M		
	1	1	1	2	2	3				
	2	2	2	2	2	3				
	3	3	3	3	3	3				
	$\frac{7}{15}$ AC	G-						A		
5(b)	x		1	2		3		В		
	Proba	ability	$\frac{2}{15}$	<u>6</u> 15		7 15				
	P(1) or P(2) correct									
	3 rd pro	bability c	correct, FT s	um to 1				В		
							20			
uestion	Answe	er					40	Marl		
(c)	E(X) =	2+12+	$\frac{21}{15} = \frac{35}{15} = \frac{7}{3}$					В		
	$Var(X) = \frac{1^2 \times 2 + 2^2 \times 6 + 3^2 \times 7}{15} - \left(\frac{7}{3}\right)^2$							М		
	$\frac{22}{45}(0.$	489)						A		
							<i>C.</i> 0			





 $216.\ 9709_s20_qp_53\ Q\hbox{:}\ 2$ 

In a c	ertain	large c	ollege,	22%	of	students	own	a	car.
--------	--------	---------	---------	-----	----	----------	-----	---	------

	ear.
•	
•	
•	
•	
•	<b>₹</b>
1 s	6 students from the college are chosen at random. Find the probability that the number of the students who own a car is at least 2 and at most 4.
•	
•	
•	
•	
•	
•	
•	***
•	
•	
•	
•	
•	
•	





Question	Answer	Marks
(a)	$0.22^3 = 0.0106$	В1
		1
(b)	$P(2, 3, 4) = {}^{16}C_2 \ 0.22^2 0.78^{14} + {}^{16}C_3 \ 0.22^3 0.78^{13} + {}^{16}C_4 \ 0.22^4 0.78^{12}$	М1
	0.179205 + 0.235877 + 0.216221	A1
	0.631	A1
		3







 $217.\ 9709_s20_qp_53\ Q:\ 4$ 

A fair four-sided spinner has edges numbered 1, 2, 2, 3. A fair three-sided spinner has edges numbered -2, -1, 1. Each spinner is spun and the number on the edge on which it comes to rest is noted. The random variable X is the sum of the two numbers that have been noted.

Draw up the probability distribution table for $X$ .	[3
	. 67
	A
63	<b>P</b>
Find $Var(X)$ .	[3
***	





 ${\bf Answer:}$ 

							Ans	wer		Marks
(a)	-1	0	0	1						
	0	1	1	2						
	2	3	3	4						
	x		-1	0	1	2	3	4		
	Probal	oility	$\frac{1}{12}$	$\frac{3}{12}$	$\frac{3}{12}$	$\frac{2}{12}$	2 12	$\frac{1}{12}$		
			12	12	12	12	12	12		
	Probabi	lity dist	ribution t	able with	correct sc	ores with a	t least one	probability		B1
			ibilities co	orrect						B1
	All pro	oabilitie	s correct							B1
(b)		1.0.		. 4 . 16					0.	3 B1
(0)	E(X) =	-1+0+	$\frac{3+4+6}{12}$	$\frac{+4}{12} = \frac{16}{12}$	$=\frac{4}{3}$					Бі
	Var(X)	= 1+0-	+3+8+1	8+16 -	$\left(\frac{4}{3}\right)^2$				: 899	M1
	$\frac{37}{18} (= 2)$	.06)								A1
										3
				<b>\</b>	3.0	9	0	3		





218	9709	w20	an	51	O	3
210.	3103	w ZU	uν	$\sigma_{\rm T}$	ω.	J

Kayla is competing in a throwing event.	A throw is counted as	a success if the distance	e achieved is
greater than 30 metres. The probability the	nat Kayla will achieve a	success on any throw i	s 0.25.

(a)	Find the probability that Kayla takes more than 6 throws to achieve a success.	[2]
	.0,	
		· • • • • • • • • • • • • • • • • • • •
<b>(b)</b>	Find the probability that, for a random sample of 10 throws, Kayla achieves at least 3 suc	cesses.
		[3]
	••	•
		, <b></b>
		••••••





(a)	$P(X > 6) = 0.75^6$	M1	$p^{n}, n = 6, 7  0$
	$0.178, \frac{729}{4096}$	A1	0·17797
		2	

Question	Answer	Marks	Guidance
(b)	$1 - P(0, 1, 2) = 1 - (0.75^{10} + {}^{10}C_1 \ 0.25^1 \ 0.75^9 + {}^{10}C_2 \ 0.25^2 \ 0.75^8)$	M1	Binomial term of form 10 C _x $p^x (1-p)^{10-x}$ , $0 , any p, x \neq 0, 10$
	1 - (0.0563135 + 0.1877117 + 0.2815676)	A1	Correct unsimplified expression
	0.474	A1	$0.474 \le p \le 0.4744$
		3	







 $219.\ 9709_w20_qp_51\ Q:\ 4$ 

The random variable X takes each of the values 1, 2, 3, 4 with probability  $\frac{1}{4}$ . Two independent values of X are chosen at random. If the two values of X are the same, the random variable Y takes that value. Otherwise, the value of Y is the larger value of X minus the smaller value of X.

a) Draw up the probability distribution table for $Y$ .	[4
	<b></b>
	<u>O'</u>
Co	
20	
<b>10.0</b>	
<b>b</b> ) Find the probability that $Y = 2$ given that $Y$ is even.	[2





## CHAPTER 4. DISCRETE RANDOM VARIABLES

 ${\bf Answer:}$ 

							_				_		1
(a)	y	1	2	3	4	B1			1	2	3	4	
	prob	7	5	3	1			1	1	1	2	3	
	L	16	16	16	16			2	1	2	1	2	
								3	2	1	3	1	
								4	3	2	1	4	
							or		obabil				th correct scores with at least re values if probability of zero
						B1	O	ne pr	obabil	ity (lii	nked w	ith cor	rrect score) correct
						B1	2 :	more	probs	(linke	ed with	corre	ct scores) correct
						B1 FT	4 ^{tl}	h pro	b corre	ect, FT	`sum o	of 3 or	4 terms = 1
						4							

Question	Answer	Marks	Guidance
(b)	$P(2 even) = \frac{\frac{5}{16}}{6}$	M1	$\frac{\textit{their} P(2)}{\textit{their} P(2) + \textit{their} P(4)} \text{ seen or correct outcome space.}$
	$P(2 \text{even}) = \frac{16}{6}$		their $P(2)$ + their $P(4)$
	16		
	$\frac{5}{6}$ or 0.833	A1	
		2	<b>10</b> '
	··ii 3	ar	





 $220.\ 9709_w20_qp_52\ Q\hbox{:}\ 1$ 

A fair six-sided die, with faces marked 1, 2, 3, 4, 5, 6, is thrown repeatedly until a
----------------------------------------------------------------------------------------

(a)	Find the probability that obtaining a 4 requires fewer than 6 throws.	[2
		•••••
		•••••
	• 67	•••••
On	another occasion, the die is thrown 10 times.	
<b>(b)</b>	Find the probability that a 4 is obtained at least 3 times.	[3
		-
		•••••
	**	
		•••••





Question	Answer	Marks	Guidance
(a)	$1 - \left(\frac{5}{6}\right)^{5}$ or $\frac{1}{6} + \frac{5}{6} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{2} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{3} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{4} \times \frac{1}{6}$	M1	$1 - p^{n}   n = 5.6$ or $p + pq + pq^{2} + pq^{3} + pq^{4} (+ pq^{5})$ $0$
	0·598, 4651 0·598, 4651	A1	
	7770	2	
(b)	$ 1 - P(0, 1, 2)) $ $ 1 - \left( \left( \frac{5}{6} \right)^{10} + {}^{10}C_1 \left( \frac{1}{6} \right) \left( \frac{5}{6} \right)^9 + {}^{10}C_2 \left( \frac{1}{6} \right)^2 \left( \frac{5}{6} \right)^8 \right) $	M1	10 C _x $p^x (1-p)^{10-x}$ , $0 , any p, x \ne 0,10$
	1 - (0·1615056 + 0·3230111 + 0·290710)	A1	Correct expression, accept unsimplified, condone omission of final bracket
	0-225	A1	0·2247 < p ≤ 0·225, WWW
		3	
	Palpa	a	





 $221.\ 9709_w20_qp_52\ Q:\ 2$ 

A bag contains 5 red balls and 3 blue balls.	Sadie takes 3 balls at random from the bag, w	ithout
replacement. The random variable $X$ represent	ts the number of red balls that she takes.	

(a)	Show that the probability that Sadie takes exactly 1 red ball is $\frac{15}{56}$ .	[2]
(b)	Draw up the probability distribution table for $X$ .	[3]
(b)	Draw up the probability distribution table for $X$ .	[3]
(b)	Draw up the probability distribution table for $X$ .	[3]
(b)	Draw up the probability distribution table for <i>X</i> .	
(b)		





# CHAPTER 4. DISCRETE RANDOM VARIABLES

(c)	Given that $E(X) = \frac{15}{8}$ , find $Var(X)$ . [2]





Question	Answer						Marks	Guidance			
(a)	P(1 red)	$=\frac{5}{8}\times\frac{3}{7}\times$	$\frac{2}{6} \times 3$				M1	$\frac{a \times \frac{b}{7} \times \frac{c}{6} \times k \text{ or } \frac{5}{d} \times \frac{3}{e} \times \frac{2}{f} \times 3, 1 \le a, b, c \le 5, d, e, f \le 8, a, b, c,}{d, e, f \text{ ell integers}}$			
	1.5						4.1	$d, e, f, k$ all integers $1 < k \le 3$ ,  AG, WWW			
	$\frac{15}{56}$						A1	AG, WWW			
	Alternative method for question 2(a)										
	$\frac{{}^{5}C_{1}^{3}C_{3}}{{}^{8}C_{3}}$	C ₂					M1	$\frac{{}^{a}C_{1}^{b}C_{2}}{{}^{8}C_{3}} \text{ or } \frac{{}^{5}C_{d}^{3}C_{e}}{{}^{8}C_{3}} \text{ or }$ $\frac{{}^{5}C_{d}^{3}C_{e}(or\ {}^{a}C_{1}^{b}C_{2})}{{}^{5}C_{3}^{3}C_{0}+{}^{5}C_{2}^{3}C_{1}+{}^{5}C_{1}^{3}C_{2}+{}^{5}C_{0}^{3}C_{3}},$			
								$ \frac{C_d \times C_e(W + C_1 \times C_2)}{{}^5C_3 \times {}^3C_0 + {}^5C_2 \times {}^3C_1 + {}^5C_1 \times {}^3C_2 + {}^5C_0 \times {}^3C_3}, $ $ a + b = 8, d + e = 3 $			
	$\frac{15}{56}$						A1	AG, WWW, $\frac{15}{56}$ must be seen			
(b)	x	0	1	2	3		B1	Probability distribution table with correct outcomes with at least one probability less than 1, allow extra outcome values if probability of zero stated.			
	Prob.	<u>1</u> 56	15 56	$\frac{30}{56} = \frac{15}{28}$	$\frac{10}{56} = \frac{5}{28}$		B1				
		0.0179	0.268	0.536	0.179		B1 FT	4th probability correct or FT sum of 3 or more probabilities = 1, with P(1) correct			
Question	Answer						Marks	Guidance			
(c)	$Var(X) = \frac{(0^2 \times 1) + 1^2 \times 15 + 2^2 \times 30 + 3^2 \times 10}{56} - \left(\frac{15}{8}\right)^2$						M1	Substitute <i>their</i> attempts at scores in correct variance formula, must have ' – mean ² ' (FT if mean calculated) (condone probabilities not summing to 1 for this mark)			
	$=\frac{15}{56} + \frac{120}{56} + \frac{90}{56} - \left(\frac{15}{8}\right)^2$							1			
	$\frac{225}{448}$ , 0.	502				20	A1				
							2				







222.  $9709_{2} = 20_{2} = 53$  Q: 2

An	An ordinary fair die is thrown until a 6 is obtained.					
(a)	Find the probability that obtaining a 6 takes more than 8 throws.	[2]				
		<b>,</b>				
	o ordinary fair dice are thrown together until a pair of $6s$ is obtained. The number enoted by the random variable $X$ .	of throws taken				
<b>(b)</b>	Find the expected value of $X$ .	[1]				
	C C C					
(c)	Find the probability that obtaining a pair of 6s takes either 10 or 11 throws.	[2]				





Question	Answer	Marks	Guidance
(a)	$\left(\frac{5}{6}\right)^8$	М1	$p^{8}$ , 0 < $p$ < 1, no $x$ , + or -
	0.233	A1	
		2	
(b)	36	B1	
		1	
(c)	$P(X=10) + P(X=11) = \left(\frac{35}{36}\right)^9 \frac{1}{36} + \left(\frac{35}{36}\right)^{10} \frac{1}{36}$	М1	OE, unsimplified expression in form $\ p^9q+p^{10}q$ , $\ p+q=1$ , no $\times$
	0.0425	A1	
		2	







223. 9709_w20_qp_53 Q: 6

Three coins A, B and C are each thrown once.

- Coins A and B are each biased so that the probability of obtaining a head is  $\frac{2}{3}$ .
- Coin C is biased so that the probability of obtaining a head is  $\frac{4}{5}$ .

(a)	Show that the probability of obtaining exactly 2 heads and 1 tail is $\frac{4}{9}$ .	[3]
	.07	
	60	•••••
		•••••
		•••••
		•••••
Γhe	random variable X is the number of heads obtained when the three coins are thrown.	
( <b>b</b> )	Draw up the probability distribution table for $X$ .	[3]





(c)	Given that $E(X) = \frac{32}{15}$ , find $Var(X)$ . [2]
	60







 ${\bf Answer:}$ 

Question	Answer	Marks	Guidance
(a)	Scenarios:	M1	One 3 factor probability with 3, 3, 5 as denominators
	HHT: $\frac{2}{3} \times \frac{2}{3} \times \frac{1}{5} = \frac{4}{45}$ HTH: $\frac{2}{3} \times \frac{1}{3} \times \frac{4}{5} = \frac{8}{45}$ THH: $\frac{1}{3} \times \frac{2}{3} \times \frac{4}{5} = \frac{8}{45}$	M1	3 factor probabilities for 2 or 3 correct scenarios added, no incorrect scenarios
	$Total = \frac{20}{45} = \frac{4}{9}$	A1	AG, Total of 3 products with clear context
		3	
(b)	x         0         1         2         3           Prob.         1         8         20         16	B1	Probability distribution table with correct outcomes with at least one probability, allow extra outcome values if probability of zero stated'
	45         45         45         45	B1	2 of P(0), P(1) and P(3) correct
		B1 FT	3 or 4 probabilities sum to 1 with P(2) correct
		3	
(c)	$Var(X) = \frac{0^2 \times 1 + 1^2 \times 8 + 2^2 \times 20 + 3^2 \times 16}{45} - \left(\frac{32}{15}\right)^2$ $= \frac{8}{45} + \frac{80}{45} + \frac{144}{45} - \left(\frac{32}{15}\right)^2$	M1	Substitute <i>their</i> attempts at scores in correct variance formula, must have '— mean ² ' (FT if calculated) (condone probs not summing to 1): must be at least 2 non-zero values
	136 or 0.604	A1	10
		2	







 $224.\ 9709_m19_qp_62\ Q:\ 4$ 

The random variable $X$ takes the values $-1$ , 1, 2, 3 only.	The probability that <i>X</i> takes the value <i>x</i> is
$kx^2$ , where k is a constant.	

	••••••••••••
	••••••
	<b>9</b>
	••••••
Find $\mathrm{E}(X)$ and $\mathrm{Var}(X)$ .	
VO.0.	







 ${\bf Answer:}$ 

Question	Answer		Answer		Answer		Marks	Guidance
(i)	x p	-1 k	1 k	2 4k	3 9k	B1	Probability distribution table with correct values of $x$ , no additional values unless with probability 0 stated, at least one correct probability including $k$	
	15k = 1,					M1	Equating $\Sigma p = 1$ , may be implied by answer	
	$k = \frac{1}{15}$					A1	If 0 scored, SCB2 for probability distribution table with correct numerical probabilities.	
						3		
Question		Answer				Marks	Guidance	
(ii)	Method 1							
	E(X) = 8k + 2	$27k = 35k = \frac{35}{15}$	$\frac{5}{5} = \frac{7}{3}$			B1FT	FT if 0< their k<1	
	$Var(X) = (k + 1)^{-1}$	+ k + 16k + 81k	$(k) - (35k)^2$			M1	Correct formula for variance, in terms of k at least – must have '– mean²'(ft).	
	$=1.16, \frac{52}{45}$					A1	10	
	Method 2							
	$E(X) = \frac{8}{15} + \frac{2}{1}$	$\frac{27}{15} = \frac{35}{15} = \frac{7}{3}$				B1FT	FT if 0< their k<1	
	$Var(X) = \frac{1}{15}$	$+\frac{1}{15} + \frac{16}{15} + \frac{81}{15}$	$-\left(\frac{7}{3}\right)^2$			М1	Subst their values in correct var formula – must have '– mean²'(ft) (condone probs not summing to exactly 1)	
	= 1.16 (= 52/4	45)				A1	Using their values from (i)	
						3		





 $225.\ 9709_s19_qp_61\ \ Q:\ 6$ 

At a funfair, Amy pays \$1 for two attempts to make a bell ring by shooting at it with a water pistol.

- If she makes the bell ring on her first attempt, she receives \$3 and stops playing. This means that overall she has gained \$2.
- If she makes the bell ring on her second attempt, she receives \$1.50 and stops playing. This means that overall she has gained \$0.50.
- If she does not make the bell ring in the two attempts, she has lost her original \$1.

The pr	robability tha	at Amy m	akes the b	ell ring c	n any att	empt is 0.2	, inde	pendentl [,]	y of	other a	ttempt	ts.
--------	----------------	----------	------------	------------	-----------	-------------	--------	-----------------------	------	---------	--------	-----

Show that the probability that Amy loses her original \$1 is 0.64.	
	<i></i>
	••••••
	••••••
	••••••
•••	
	••••••
	•••••
	•••••





# CHAPTER 4. DISCRETE RANDOM VARIABLES

(ii)	Complete the pr	obability distribution	on table for t	he amount that	Amy gains.	[4]
		Amy's gain (\$)				
		Probability	0.64			
						••••••
						<u> </u>
						<i></i>
				- 10		
	•••••		•••••		······	•••••
				<b>/</b>		
		A	20.			
			7			
	•••••	AQ-		••••••	•••••	•••••
(iii)	Calculate Amy's	s expected gain.				[1]
			•••••			











 $226.\ 9709_s19_qp_62\ Q:\ 3$ 

The probability that Janice will buy an item online in any week is 0.35.	Janice does not buy more than
one item online in any week.	

(1)	Find the probability that, in a 10-week period, Janice buys at most / items online.	[3
		••••
		••••
		••••
	40	••••
		••••
ii)	The probability that Janice buys at least one item online in a period of $n$ weeks is greater than 0 Find the smallest possible value of $n$ .	 .99. [3]
ii)	The probability that Janice buys at least one item online in a period of $n$ weeks is greater than 0 Find the smallest possible value of $n$ .	
ii)	The probability that Janice buys at least one item online in a period of $n$ weeks is greater than 0 Find the smallest possible value of $n$ .	
ii)	The probability that Janice buys at least one item online in a period of <i>n</i> weeks is greater than 0 Find the smallest possible value of <i>n</i> .	
i)	The probability that Janice buys at least one item online in a period of <i>n</i> weeks is greater than 0 Find the smallest possible value of <i>n</i> .	
ii)	The probability that Janice buys at least one item online in a period of <i>n</i> weeks is greater than 0 Find the smallest possible value of <i>n</i> .	
ii)	The probability that Janice buys at least one item online in a period of <i>n</i> weeks is greater than 0 Find the smallest possible value of <i>n</i> .	
i)	The probability that Janice buys at least one item online in a period of <i>n</i> weeks is greater than 0 Find the smallest possible value of <i>n</i> .	
i)	The probability that Janice buys at least one item online in a period of <i>n</i> weeks is greater than 0 Find the smallest possible value of <i>n</i> .	
i)	The probability that Janice buys at least one item online in a period of <i>n</i> weeks is greater than 0 Find the smallest possible value of <i>n</i> .	
i)	The probability that Janice buys at least one item online in a period of <i>n</i> weeks is greater than 0 Find the smallest possible value of <i>n</i> .	
i)	The probability that Janice buys at least one item online in a period of <i>n</i> weeks is greater than 0 Find the smallest possible value of <i>n</i> .	
i)	The probability that Janice buys at least one item online in a period of <i>n</i> weeks is greater than 0 Find the smallest possible value of <i>n</i> .	
i)	The probability that Janice buys at least one item online in a period of <i>n</i> weeks is greater than 0 Find the smallest possible value of <i>n</i> .	
ii)	The probability that Janice buys at least one item online in a period of <i>n</i> weeks is greater than 0 Find the smallest possible value of <i>n</i> .	





$0.01 > (0.65)^n$ (Note $1 - 0.99$ is equivalent to $0.01$ etc.) $n > 10.69$ M1 Solving their $a^n = c$ , $0 < a, c < 1$ using logs or Trial and Error	(i)	Answer	Marks	Guidance
Condone $1-\hat{A}+B+C$ leading to correct solution $= 0.995$ B1 B1 not dependent on previous marks.  Alternative method for question 3(t)  P(at most 7) = P(0.1,2,3,4.5,6.7)  = $(0.65)^{10} + ^{10}C(10.35)^{1}(0.65)^{9} + + ^{10}C_{1}(0.35)^{1}(0.65)^{3}$ A1 Correct unsimplified answer or individual terms evaluated seen  = $0.995$ B1  (ii) $1 - (0.65)^{10} + ^{10}C(10.35)^{1}(0.65)^{9} + + ^{10}C_{1}(0.35)^{1}(0.65)^{3}$ MI Equation or inequality with $(0.65)^{10}$ and $(0.01)$ or $(0.35)^{10}$ and $(0.99)$ (Note $(0.99)$ is equivalent to $(0.01)$ etc.) $(0.10) = (0.05)^{10}$ MI Solving their $a^{10} = (0.9)$ of $(0.90)$ and $(0.90)$ or $(0.35)^{10}$ and $(0.90)$ is equivalent to $(0.10)$ etc.)  smallest $(0.10) = (0.10)$ in		$P(\text{at most 7}) = 1 - P(8, 9, 10) = 1 - {}^{10}\text{C8}(0.35)^{8}(0.65)^{2} - {}^{10}\text{C}_{9}(0.35)^{9}(0.65)^{1} - (0.35)^{10}$	M1	Use of normal approximation M0 Binomial term of form $^{10}\text{C}_{xp}^{p}\text{r}(1-p)^{10-x}$ $0  any p, x \neq 10,0$
Alternative method for question 3(i)  P(at most 7) = P(0,1,2,3,4,5,6,7)  = $(0.65)^{10} + {}^{10}\text{C1}(0.35)^{1}(0.65)^{9} + + {}^{10}\text{C}_{3}(0.35)^{7}(0.65)^{3}$ = $(0.65)^{10} + {}^{10}\text{C1}(0.35)^{1}(0.65)^{9} + + {}^{10}\text{C}_{3}(0.35)^{7}(0.65)^{3}$ A1 Correct unsimplified answer or individual terms evaluated seen  = $(0.65)^{10} + {}^{10}\text{C1}(0.35)^{1}(0.65)^{9} + + {}^{10}\text{C}_{3}(0.35)^{7}(0.65)^{3}$ B1  (ii) $1 - (0.65)^{8} > 0.99$ $0.01 > (0.65)^{8}$ M1 Equation or inequality with $(0.65)^{8}$ and $0.01$ or $(0.35)^{8}$ and $0.99$ (Note $1 - 0.99$ is equivalent to $0.01$ etc.) $n > 10.69$ M1 Solving their $n^{2} = c$ , $0 < a, c < 1$ using logs or Timi and Error Hardware inappropriate, at least 2 trials are required for Trial and Error mark  smallest $n = 11$ A1 CAO		[= 1 - 0.004281 - 0.0005123 - 0.00002759]	A1	
P(at most 7) = P(0.1,2.3,4.5,6.7)  P(at most 7) = P(0.1,2.3,4.5.6)  P(at most 7) = P(0.1,2.3,4.5)  P(at most 7) = P		= 0.995	B1	B1 not dependent on previous marks.
= (0.65) ¹⁰ + ¹⁰ C1(0.35) ¹ (0.65) ⁹ ++ ¹⁰ C ₇ (0.35) ⁷ (0.65) ³   A1   Correct unsimplified answer or individual terms evaluated seen		Alternative method for question 3(i)		
a		P(at most 7) = P(0,1,2,3,4,5,6,7)	M1	Binomial term of form ${}^{10}\text{C}_x p^x (1-p)^{10-x}  0$
3		$= (0.65)^{10} + {}^{10}C1(0.35)^{1}(0.65)^{9} + + {}^{10}C_{7}(0.35)^{7}(0.65)^{3}$	A1	Correct unsimplified answer or individual terms evaluated seen
(ii) 1-(0.65)* > 0.99		= 0.995	B1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	
smallest $n = 11$ A1 CAO  CAO	(ii)		M1	Equation or inequality with $(0.65)^n$ and $0.01$ or $(0.35)^n$ and $0.99$ only (Note $1-0.99$ is equivalent to $0.01$ etc.)
Palpa Califilation		n > 10.69	M1	If answer inappropriate, at least 2 trials are required for Trial and Error M
Palpacamin		smallest $n = 11$	A1	CAO
Palpacamion			3	. 0
			C	





 $227.\ 9709_s19_qp_62\ Q\hbox{:}\ 5$ 

Maryam has 7 sweets in a tin; 6 are toffees and 1 is a chocolate. She chooses one sweet at random and takes it out. Her friend adds 3 chocolates to the tin. Then Maryam takes another sweet at random out of the tin.

(i)	Draw a fully	y labelled tree diagram to illustrate this situation.	131

Draw up the probability distribution table for the number of toffees taken. [3]





(iii)	Find the mean number of toffees taken.	[1]
(iv)	Find the probability that the first sweet taken is a chocolate, given that the sec a toffee.	ond sweet taken is [4]
		<u></u>
		)
	***	





# CHAPTER 4. DISCRETE RANDOM VARIABLES

### Answer:

Papa Cambridge

Question	Answer				Marks	Guidance		
(i)	(i) T 5/9		B1	First pair of branches labels and probs correct (6/7 and 1/7 or rounding to 0.857 and 0.143)				
	6/7	T	4/9			(Labelling must be logicallye.g. (T and T) or (T and Not T) would be acceptable)		
	6//		4/9	c	B1	Either of second top pair or bottom of branches labels and probs correct		
	1/7	$\sim$ _c	6/9	T				
			3/9	C	B1	Both second pairs of branches labels and probs correct. No additional / further branches.		
					3			
(ii)	No of toffees				B1	P(1) correct		
	taken (T)	0	1	2	B1	P(0) or P(2) correct		
	prob	$\frac{3}{63}$ , 0.0476(2)	$\frac{30}{63}$ , 0.476(2)	30 63, 0.476(2)	В1	FT Correct values in table, any additional values of $T$ have stated probability of zero. For FT $\Sigma p = 1$ ,		
					3	20		
(iii)	$E(X) = \frac{90}{63} \ (\frac{10}{7})$	) (1.43)			B1	Not FT		
					1			
Question	n Answer		Marks	Guidance				
(iv)	$P(1^{\text{st}} C \mid 2^{\text{nd}} T) = \frac{P(C \cap T)}{P(T)} = \frac{\frac{1}{7} \times \frac{6}{9}}{\frac{1}{7} \times \frac{6}{9} + \frac{6}{7} \times \frac{5}{9}} = \frac{\frac{6}{63}}{\frac{36}{63}}$		B1	P(C∩T) attempt seen as numerator of a fraction, consistent with <i>their</i> tree diagram or correct				
		P(T)	$\frac{1}{7} \times \frac{6}{9} + \frac{6}{7} \times \frac{5}{9}$	$\frac{36}{63}$	M1	Summing 2 appropriate two-factor probabilities, consistent with <i>their</i> tree diagram or correct seen anywhere		
				0	Al	$\frac{36}{63}$ oe or correct unsimplifed expression seen as numerator or denominator of a fraction		
	$\frac{1}{6}$ oe			0	A1	Final answer		
			-4	71	4			





 $228.\ 9709_s19_qp_63\ \ Q:\ 6$ 

**(i)** 

A fair five-sided spinner has sides numbered 1, 1, 1, 2, 3. A fair three-sided spinner has sides numbered 1, 2, 3. Both spinners are spun once and the score is the product of the numbers on the sides the spinners land on.

Draw up the probability distribution table for the score.	[4]
	•
**	







1)	Find the mean and the variance of the score.
	A ()
)	Find the probability that the score is greater than the mean score.





$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Question	Answer								Marks	Guidance		
(ii)	(i)	score	1	2	3	4	6	9		B1			
Bi   3 or more correct probabilities with correct scores		prob	$\frac{3}{15}$	$\frac{4}{15}$	$\frac{4}{15}$	$\frac{1}{16}$	$\frac{2}{15}$	$\frac{1}{16}$		B1	2 probabilities (with correct score) correct		
(ii) $ \begin{aligned} & \text{mean} = \frac{(3+8+12+4+12+9)}{15} = \frac{48}{15} (3.2) \\ & \text{Var} = \frac{(3+16+36+16+72+81)}{15} - (\text{their } 3.2)^2 \end{aligned} $ $ \begin{aligned} & \text{MI} & FT Substitute their attempts at scores in correct var formula, must have "$			15	15	15	15	15	15		B1	3 or more correct probabilities with correct scores		
(ii)										B1	<b>FT</b> $\Sigma p = 1$ , at least 4 probabilities		
$\frac{\text{mean} = \frac{2}{15} - \frac{1}{15} \frac{(3.2)}{(3.2)}}{\text{Var} = \frac{(3+16+36+16+72+81)}{15} - (\text{their 3 } 2)^2} = \frac{\text{MI}}{15} = \frac{\text{FT Substitute their}}{\text{turnst have "-mean?"}} \text{ (condone probabilities not summing to 1)}$ $\frac{224}{15} - 3.2^2 = 4.69 \left(\frac{352}{75}\right)$ $\frac{3}{15} = \frac{3}{15} - \frac{3}{15} = \frac{3}{15} =$										4			
$=\frac{224}{15}-3.2^2=4.69\left(\frac{352}{75}\right)$ $=\frac{3}{15}$ (iii) Score of 4, 6, 9 Prob $\frac{4}{15}$ (0.267) $=\frac{224}{15}-3.2^2=4.69\left(\frac{352}{75}\right)$ A1 Identifying relevant scores from their mean and their table  Correct answer SC B1 for 4/15 with no working	(ii)	mean = $\frac{(3+8+12+4+12+9)}{15} = \frac{48}{15}$ (3.2)								B1			
(iii) Score of 4, 6, 9 Prob $\frac{4}{15}$ (0.267)  A1 Correct answer SC B1 for 4/15 with no working		$Var = \frac{(3+1)^2}{2}$	6+36+1 15	16 + 72 + 8	31) – (the	ir 3.2) ²				М1			
Score of 4, 6, 9		$=\frac{224}{15}-3.2$	$2^2 = 4.69$	$\left(\frac{352}{75}\right)$						A1			
Prob 4/15 (0.267)  A1 Correct answer SC B1 for 4/15 with no working										3	.0.		
Prob 15 (0.267)  SC B1 for 4/15 with no working  2	(iii)	Score of 4,	5, 9							M1	Identifying relevant scores from their mean and their table		
SC B1 for 4/15 with no working		Prob $\frac{4}{15}$ (0.	267)							A1	Correct answer		
Palpacanilo		15									SC B1 for 4/15 with no working		
Palpa Calnilo V										2			
		•••						52		3			







 $229.\ 9709_w19_qp_61\ Q:\ 2$ 

Annan has designed a new logo for a sportswear company. A survey of a large number of customers found that 42% of customers rated the logo as good.

(i)	A random sample of 10 customers is chosen. Find the probability that fewer than 8 of them rate the logo as good. [3]
	73
(ii)	On another occasion, a random sample of $n$ customers of the company is chosen. Find the
(11)	smallest value of $n$ for which the probability that at least one person rates the logo as good is greater than 0.995. [3]
	**





Question	Answer	Marks	Guidance
(i)	$1 - (^{10}C_2 \ 0.42^8 \ 0.58^2 + ^{10}C_9 \ 0.42^9 \ 0.58^1 + 0.42^{10})$	M1	Binomial term of form ${}^{10}C_a p^a (1-p)^b \ 0$
		A1	Correct unsimplified expression
	0.983	A1	
		3	
(ii)	$1 - P(0) > 0.995 \ 0.58^n < 0.005$	M1	Equation or inequality involving 0.58" or 0.42" and 0.995 or 0.005
	$n > \frac{\log 0.005}{\log 0.58}$ $n > 9.727$	M1	Attempt to solve using logs or Trial and Error. May be implied by their answer (rounded or truncated)
	n=10	A1	CAO
		3	
	Palpa		





 $230.\ 9709_w19_qp_61\ Q:\ 4$ 

In a probability distribution the random variable X takes the values -1, 0, 1, 2, 4. The probability distribution table for X is as follows.

x	-1	0	1	2	4
P(X=x)	$\frac{1}{4}$	p	p	<u>3</u>	4 <i>p</i>

<b>(i)</b>	Find the value of $p$ .	[2]
		0-
		0
		0
(ii)	Find $E(X)$ and $Var(X)$ .	[3]
	VO.0.	



505
-----

Pa	paCambridge	
		•••
		· • • •
		•••
		•••
(iii)	Given that $X$ is greater than zero, find the probability that $X$ is equal to 2.	
		••
		•••
		••
		••
		••
	NO CO	
		••
		••
		•••







 ${\bf Answer:}$ 

Question	Answer	Marks	Guidance
(i)	$\frac{1}{4} + p + p + \frac{3}{8} + 4p = 1$	M1	Unsimplified sum of probabilities equated to 1
	$p = \frac{1}{16}$	A1	If method FT from <i>their</i> incorrect (i), expressions for E(X) and Var(X) must be seen unsimplified with all probabilities <1, condone not adding to 1
		2	
Question	Answer	Marks	Guidance
(ii)	$[E(X)] = -\frac{1}{4} + \frac{1}{16} + \frac{6}{8} + 1 = \frac{25}{16}$	M1	May be implied by use in Variance, accept unsimplified
	$Var(X) = \frac{1}{4} + \frac{1}{16} + \frac{12}{8} + \frac{16}{4} - \left(their \frac{25}{16}\right)^2$	M1	Substitute into correct variance formula, must have ' their mean ² '
	$\frac{863}{256}$ or 3.37	A1	OE
		3	
(iii)	$P(X=2 X>0) = \frac{P(X=2)}{P(X>0)} = \frac{\frac{3}{8}}{\frac{11}{16}}$	M1	Conditional probability formula used consistent with their probabilities
	$\frac{6}{11}$ or 0.545	A1	
		2	
	Palpa	3	





 $231.\ 9709_w19_qp_62\ Q\hbox{:}\ 5$ 

**(i)** 

A fair red spinner has four sides, numbered 1, 2, 3, 3. A fair blue spinner has three sides, numbered -1, 0, 2. When a spinner is spun, the score is the number on the side on which it lands. The spinners are spun at the same time. The random variable X denotes the score on the red spinner minus the score on the blue spinner.

Draw up the probability distribution table for $X$ .	[4]
	<u></u>
	8
***	







Find $Var(X)$ .	[3]
	20
	10,
<i>F</i> ****	
•	
***	





(i) $\frac{x}{p} \frac{1}{12} \frac{1}{12} \frac{3}{12} \frac{2}{12} \frac{3}{12} \frac{2}{12} \frac{3}{12} \frac{2}{12}$ $= \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{3}{12} \frac{2}{12} \frac{3}{12} \frac{2}{12} \frac{3}{12} \frac{2}{12}$ $= \frac{1}{12} \frac{3}{12} \frac{3}{12} \frac{2}{12} \frac{3}{12} \frac{3}{$	(2)				Answer				Marks	Guidance
$ \begin{array}{ c c c c c c c c c }\hline p & \frac{1}{12} & \frac{1}{12} & \frac{3}{12} & \frac{2}{12} & \frac{3}{12} & \frac{2}{12} \\ \hline & & & & & & & & & & & \\ \hline & & & & &$	(1)	x .	-1	0	1	2	3	4	B1	
(ii) $E[(X)] = \left(\frac{-1+0+3+4+9+8}{12}\right) = \frac{23}{12}$ $[Var(X)] = \frac{1+0+3+8+27+32(=71)}{12} - \left(\frac{23}{12}\right)^2$ 2.24 or $\frac{323}{144}$ or $2\frac{35}{144}$ M1 Day be implied by use in variance. Allow unsimplified expression  M1 Appropriate variance formula using their $E(X)^2$ A1 CAO			1		3	2	3	2		
(ii) $ [E(X)] = \left(\frac{-1+0+3+4+9+8}{12}\right) = \frac{23}{12} $ $ [Var(X)] = \frac{1+0+3+8+27+32(=71)}{12} - \left(\frac{23}{12}\right)^2 $ $ 2.24 \text{ or } \frac{323}{144} \text{ or } 2\frac{35}{144} $ $ All correct, values in table SC1 No more than 1 correct probability and at least 5 probabilities summing to 1 in table   4   M1   May be implied by use in variance. Allow unsimplified expression   M1   Appropriate variance formula using their E(X)^2   3   A1   CAO $										2 probabilities correct, may not be in table
SC1 No more than 1 correct probability and at least 5 probabilities summing to 1 in table  (ii) $[E(X)] = \left(\frac{-1+0+3+4+9+8}{12}\right) = \frac{23}{12}$ M1 May be implied by use in variance. Allow unsimplified expression  [Var(X)] = $\frac{1+0+3+8+27+32(=71)}{12} - \left(\frac{23}{12}\right)^2$ M1 Appropriate variance formula using their $E(X)^2$ 2.24 or $\frac{323}{144}$ or $2\frac{35}{144}$ A1 CAO									B1	2 more probabilities correct, may not be in table
(ii) $[E(X)] = \left(\frac{-1+0+3+4+9+8}{12}\right) = \frac{23}{12}$ $[Var(X)] = \frac{1+0+3+8+27+32(=71)}{12} - \left(\frac{23}{12}\right)^2$ M1 Appropriate variance formula using their $E(X)^2$ $2.24 \text{ or } \frac{323}{144} \text{ or } 2\frac{35}{144}$ A1 CAO									B1	SC1 No more than 1 correct probability and at least 5
[Var(X)] = 1 + 3 + 3 + 3 + 2 + 3 + 3 + 2 + 3 + 3 + 2 + 3 + 2 + 3 + 3	(ii)	[E(X)]	$= \left(\frac{-1+0}{}\right)$	+3+4+9	$\left(\frac{+8}{12}\right) = \frac{23}{12}$	3				
2.24 or 144 or 2 144 3		[Var(X	$[0] = \frac{1+0+1}{2}$	12	7+32(=7	$\frac{1}{1} - \left(\frac{23}{12}\right)$	2		М1	Appropriate variance formula using their $E(X)^2$
		2.24 or	$\frac{323}{144}$ or 2	35 144					A1	CAO
APalPa Califilo									3	
••										







232. 9709_w19_qp_63 Q: 6

A box contains 3 red balls and 5 white balls.	One ball is chosen at random from the box and is not
returned to the box. A second ball is now cho	sen at random from the box.

(i)	Find the probability that both balls chosen are red.	[1]
		•••••
		•••••
(ii)	Show that the probability that the balls chosen are of different colours is $\frac{15}{28}$ .	[2]
		••••
		•••••
		· • • • • • • • • • • • • • • • • • • •
		, <b></b>
(iii)	Given that the second ball chosen is red, find the probability that the first ball chosen is red.	[2]
	***	•••••
		•••••





The random variable X denotes the number of red balls chosen.

(1V)	Draw up the probability distribution table for $X$ .	[2
		.01
	•	0
	**	<i>*</i>
( <b>v</b> )	Find $Var(X)$ .	[3





# CHAPTER 4. DISCRETE RANDOM VARIABLES

Question				Aı	swer	Marks	Guidance				
(i)	P(RR) =	$\frac{3}{8} \times \frac{2}{7} = \frac{3}{2}$	3 28			B1	OE				
						1					
(ii)	$\frac{P(RW)}{\frac{3}{8} \times \frac{5}{7} + \frac{5}{8}}$					M1	Method shown, numerical calculations identified, may include replacements				
	$=\frac{15}{28}$					A1	AG, Fully correct calculations				
	Alternat	tive meth	od for qu	estion 6	(ii)						
	$1 - (P(R))$ $1 - \left(\frac{3}{28}\right)$	$R) + P(W + \frac{5}{8} \times \frac{4}{7})$	W)			M1	Method shown, numerical calculations identified, may include replacements				
	$=\frac{15}{28}$					A1	AG, Fully correct calculations				
						2					
(iii)	(iii) P(first red second red) = $\frac{their (i)}{their (i) + \frac{5}{8} \times \frac{3}{7}} = \frac{\frac{3}{8} \times \frac{2}{7}}{\frac{3}{8} \times \frac{2}{7} + \frac{5}{8} \times \frac{3}{7}} = \frac{\frac{3}{28}}{\frac{21}{56}}$										Conditional probability formula used consistent with <i>their</i> probabilities or correct
	$=\frac{2}{7}$						OE				
						2					
Question				Aı	swer	Marks	Guidance				
(iv)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					В1	Probability distribution table with correct values of <i>x</i> and at least one correct probability placed. Extra <i>x</i> values allowed with probability of zero stated.				
					00	B1FT	Fully correct FT P(2) = their (i), P(1) = their (ii), $\Sigma(p) = 1$ .				
(v)	E(X) = $\frac{30}{56} + \frac{12}{56} = \frac{42}{46} = \frac{3}{4}$						May be implied by use in variance formula				
	$Var(X) = \frac{30}{56} + \frac{24}{56} - \left(their \frac{3}{4}\right)^2$						Substitute into correct variance formula, must have '— their mean²' Must be for 2 or more non-zero x-values				
	$\frac{45}{112}$ or 0	.402				A1	Correct final answer				
			1000	-		3					





 $233.\ 9709_m18_qp_62\ Q:\ 4$ 

The discrete random variable X has the following probability distribution.

х	-2	0	1	3	4
P(X = x)	0.2	0.1	p	0.1	q

(i)	Given that $E(X) = 1.7$ , find the values of $p$ and $q$ .	[4]
		<u></u>
		••••
	6.0.	
	100	•••••••
(ii)	Find $Var(X)$ .	[2]
		••••••
		•••••••
		••••••
		•••••••





Question	Answer	Marks	Guidance
(i)	$\Sigma p = 1: 0.2 + 0.1 + p + 0.1 + q = 1: p + q = 0.6$	M1	Unsimplified sum of probabilities equated to 1
	$\Sigma px = 1.7: -0.4 + 0 + p + 0.3 + 4q = 1.7:$	M1	Unsimplified Sum of px equated to 1.7
	p + 4q = 1.8	M1	Solve simult. equations to find expression in $p$ or $q$
	p = 0.2, q = 0.4	A1	
		4	
(ii)	$Var(X) = \sum px^2 - 1.7^2 = 4x0.2 + 1p + 9x0.1 + 16q - 1.7^2$ = 8.3 - 2.89	М1	Use correct unsimplified expression for variance
	= 5.41	A1	
		2	







234. 9709_s18_qp_61 Q: 3

And	ly has 4 red socks and 8 black socks in his drawer. He takes 2 socks at rando	om from his drawer.
(i)	Find the probability that the socks taken are of different colours.	[2]
		<b>)</b>
The	random variable $X$ is the number of red socks taken.	
(ii)	Draw up the probability distribution table for $X$ .	[3]
	••	
(iii)	Find $E(X)$ .	[1]







 ${\bf Answer:}$ 

Question		Answer			Marks	Guidance
(i)	$P(RB) + P(BR) = \frac{4}{12} \times \frac{8}{1}$	$\frac{8}{1} + \frac{8}{12} \times \frac{8}{1}$	4 oe		М1	Multiply 2 probs together and summing two 2-factor probs, unsimplified, condone replacement
	P(diff colours) = $\frac{64}{132}$ ( $\frac{1}{3}$ )	$\frac{6}{3}$ ) (0.485) o	oe .		A1	Correct answer
	Method 2 1 – P(BB) – P(RR) = 1 –	$\frac{4}{12} \times \frac{3}{11} - \frac{3}{11}$	$\frac{8}{12} \times \frac{7}{11}$		M1	Multiply 2 probs together and subtracting two 2-factor probs from 1, unsimplified, condone replacement
	P(diff colours) = $\frac{64}{132}$ ( $\frac{16}{33}$	$(\frac{5}{3})$ oe			A1	Correct answer
	Method 3 $P(\text{diff colours}) = \frac{\binom{4}{12} \binom{1}{12}}{\binom{12}{12}}$	⁸ C ₁ )			M1	Multiply 2 combs together and dividing by a combination
	$=\frac{16}{33}$				A1	Correct answer
					2	
(ii)	Number of red socks	0	1	2	B1	Prob distribution table drawn, top row correct, condone additional values with $p = 0$ stated
	Prob	$\frac{14}{33}$	$\frac{16}{33}$	$\frac{3}{33}$		Will p V stated
					B1	P(0) or P(2) correct to 3sf (need not be in table)
					B1	All probs correct to 3sf, condone P(0) and P(2) swapped if correct
					3	
Question		Answer			Marks	Guidance
(iii)	$E(X) = 1 \times \frac{16}{33} + 2 \times \frac{3}{33}$	$=\frac{16}{33}+\frac{6}{33}$	$=\frac{22}{33}(\frac{2}{3})$		B1ft	ft their table if $0, 1, 2$ only, $0$
					1	





235. 9709_s18_qp_61 Q: 6

Vehicles approaching a certain road junction from town A can either turn left, turn right or go straight on. Over time it has been noted that of the vehicles approaching this particular junction from town A, 55% turn left, 15% turn right and 30% go straight on. The direction a vehicle takes at the junction is independent of the direction any other vehicle takes at the junction.

goes straight on and the other two either both turn left or both turn right.	Find the probability that, of the next three ve	turn left or both turn right	
	goes straight on and the other two either both	turn left of both turn right.	
			••••••
			<b>,</b>
			• • • • • • • • • • • • • • • • • • • •
		A COP	
			•••••
			••••••
			••••••
		••••••	
			• • • • • • • • • • • • • • • • • • • •







•	Three vehicles approach the junction from town $A$ . Given that all three drivers choose the direction at the junction, find the probability that they all go straight on.
	VO.0.





	Answer	Marks	Guidance
(i)	P(SLL) = $(0.3)(0.55)(0.55) = 0.09075 \left(\frac{363}{4000}\right)$	M1	P(SLL), P(SRR), P(SSL) or P(SSR) seen
	P(SRR) = $(0.3)(0.15)(0.15) = 0.00675 \left(\frac{27}{4000}\right)$	A1	Two correct options 0.09075 or 0.00675 can be unsimplified
	Total = ${}^{3}C_{1} \times P(SLL) + {}^{3}C_{1} \times P(SRR)$ = 0.27225 + 0.02025	M1	Summing 6 prob options not all identical
	Prob = 0.293 accept 0.2925 ( $\frac{117}{400}$ )	A1	Correct answer
		4	
(ii)	$P(SSS \mid all same dir^{n}) = \frac{P(SSS \ and \ same \ dir^{n})}{P(same \ direction)}$	B1	(0.3) ³ oe seen on its own as num or denom of a fraction
		M1	Attempt at P(SSS+LLL+RRR) seen anywhere
	$= \frac{0.3 \times 0.3 \times 0.3}{(0.15)^3 + (0.55)^3 + (0.3)^3}$	A1	$(0.15)^3 + (0.55)^3 + (0.3)^3$ oe seen as denom of a fraction
	$= 0.137 \left(\frac{108}{787}\right)$	A1	Correct answer
		4	
	··i Pal		







 $236.\ 9709_s18_qp_62\ Q:\ 4$ 

Mrs Rupal chooses 3 animals at random from 5 dogs and 2 cats. The random variable X is the number of cats chosen.

(1)	Draw up the probability distribution table for $X$ .	[4]
	<b>20</b>	
	<b>100</b>	
ii)	You are given that $E(X) = \frac{6}{7}$ . Find the value of $Var(X)$ .	[2]
		••••••





Question	Answer	Marks	Guidance
(i)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	В1	Prob distribution table drawn, top row correct with at least one probability $0  entered, condone additional values with p = 0 stated$
	$P(0) = \frac{5}{7} \times \frac{4}{6} \times \frac{3}{5} = \frac{2}{7} (0.2857)$	B1	One probability correct (need not be in table)
	$P(1) = \frac{2}{7} \times \frac{5}{6} \times \frac{4}{5} \times {}^{3}C_{1} = \frac{4}{7} (0.5713)$	B1	Another probability correct (need not be in table).
	$P(2) = \frac{2}{7} \times \frac{1}{6} \times \frac{5}{5} \times {}^{3}C_{2} = \frac{1}{7} (0.1429)$	B1	Values in table, all probs correct (to 3SF) or 3 probabilities summing to 1
		4	
(ii)	Var (X) = $1 \times \frac{4}{7} + 4 \times \frac{1}{7} - (\frac{6}{7})^2$ = $\frac{8}{7} - (\frac{6}{7})^2$	M1	Unsimplified correct numerical expression for variance or <i>their</i> probabilities from (i) $0  in unsimplified variance expression$
	$=\frac{20}{49}$ or 0.408	A1	Correct answer (0.40816) nfww Final answer does <b>not</b> imply the method mark
		2	
	·: J		







 $237.\ 9709_s18_qp_63\ Q:\ 2$ 

The random variable X has the distribution $N(-3, \sigma^2)$ .	The probability that a randomly chosen value
of $X$ is positive is 0.25.	

Find the value of c	<i>,</i> .		
			•••••
			<i>6</i> 2-
			40
			10)
		······	
•••••			
	•••••		
Find the probabilit	ty that, of 8 random va	lues of $X$ , fewer than 2 wil	II be positive.
Find the probabilit	ty that, of 8 random va	lues of $X$ , fewer than 2 wil	II be positive.
Find the probabilit	ty that, of 8 random va	lues of $X$ , fewer than 2 wil	Il be positive.
Find the probabilit	ty that, of 8 random va	lues of $X$ , fewer than 2 wil	II be positive.
Find the probabilit	ty that, of 8 random va	lues of $X$ , fewer than 2 wil	ll be positive.
Find the probabilit	ty that, of 8 random va	lues of $X$ , fewer than 2 wil	Il be positive.
Find the probabilit	ty that, of 8 random va	lues of X, fewer than 2 wil	Il be positive.
Find the probabilit	ty that, of 8 random va	lues of X, fewer than 2 wil	Il be positive.
Find the probabilit	ty that, of 8 random va	lues of X, fewer than 2 wil	Il be positive.
Find the probabilit	ty that, of 8 random va	lues of X, fewer than 2 wil	Il be positive.
Find the probabilit	ty that, of 8 random va	lues of X, fewer than 2 wil	Il be positive.
Find the probabilit	ty that, of 8 random va	lues of X, fewer than 2 wil	Il be positive.
		llues of X, fewer than 2 wil	





Question	Answer	Marks	Guidance
(i)	z = 0.674	B1	z value ±0.674
	$0.674 = \frac{03}{\sigma}$	М1	±Standardising with 0 and equating to a z-value
	σ = 4.45	A1	Correct answer www ie not ignoring a minus sign
	Total:	3	
(ii)	P(0, 1)	M1	Any bin of form ${}^{8}C_{x}(0.75)^{x}(0.25)^{8-x}$ any $x$
	$= (0.75)^8 + {}^{8}C_{1}(0.25)(0.75)^7$	M1	Correct unsimplified answer, may be implied by numerical values
	0.1001+ 0.2670 = 0.367	A1	Correct answer
	<b>Method 2</b> $1 - P(8,7,6,5,4,3,2) = 1 - (0.25)^8 - {}^8C_1(0.75)(0.25)^7 - \dots$	M1	Any bin of form ${}^{8}C_{x}(0.75)^{x}(0.25)^{9-x}$ any x
	$-{}^{8}C_{2}(0.75)^{6}(0.25)^{2}$	M1	Correct unsimplified answer
	= 0.367	A1	Correct answer
	Total:	3	
	·: Pale		





 $238.\ 9709_s18_qp_63\ \ Q:\ 5$ 

A game is played with 3 coins, A, B and C. Coins A and B are biased so that the probability of obtaining a head is 0.4 for coin A and 0.75 for coin B. Coin C is not biased. The 3 coins are thrown once

(i)	Draw up the probability distribution table for the number of heads obtained.	[5]





(ii)	Hence calculate the mean and variance of the number of heads obtained.	[3]
	$\mathcal{O}_{\mathcal{I}}$	
		,
		•••••







(i)			Answer			Marks	Guidance
(i) $P(0) = 0.6 \times 0.25 \times 0.5 = 0.075 \\ P(1) = 0.4 \times 0.25 \times 0.5 + 0.6 \times 0.75 \times 0.5 + 0.6 \times 0.25 \times 0.5 = 0.35$		(i)	B1	0, 1, 2, 3 seen as top line of a pdf table OR attempting to evaluate P(0), P(1), P(2) and P(3)			
	$ \begin{array}{c} P(2) = 0.4 \times 0.75 \times 0.5 + 0.4 \times 0.25 \times 0.5 + 0.6 \times 0.75 \times 0.5 = \\ 0.425 \\ P(3) = 0.4 \times 0.75 \times 0.5 = 0.15 \end{array} $					M1	Multiply 3 probabilities together from 0.4 or 0.6, 0.25 or 0.75, 0.5 with or without a table
	No of heads	0	1	2	3	M1	Summing 3 probabilities for P(1) or P(2) with or without a table
		0.075	0.35	0.425	0.15	B1	One correct probability seen.
		$\left(\frac{3}{40}\right)$	$\left(\frac{7}{20}\right)$	$\left(\frac{17}{40}\right)$	$\left(\frac{3}{20}\right)$	A1	All correct in a table
					Total:	5	
(ii)	E(X) = 0.35 + 2	2 × 0.425	+ 3 × 0.15 =	$1.65 \left(\frac{33}{20}\right)$	pe)	M1	Correct unsimplified expression for the mean using their table, $\sum p=1$ ; can be implied by correct answer
(ii)	Var(X) = 0.35 + 0.35	+ 4 × 0.42	$25 + 9 \times 0.15$	$-1.65^2$		М1	Correct unsimplified expression for the variance using their table and their mean 2 subtracted, $\sum \! p = 1$
	= 0.678 (0.6775	$5) \left(\frac{271}{400}\right)$	oe)			A1	Correct answer
					Total:	3	
	••			20	O _S		





 $239.\ 9709_w18_qp_61\ Q:\ 2$ 

A random variable X has the probability distribution shown in the following table, where p is a constant.

х	-1	0	1	2	4
P(X=x)	p	p	2 <i>p</i>	2 <i>p</i>	0.1

(i)	Find the value of $p$ .	[1]
( <b>ii</b> )	Given that $E(X) = 1.15$ , find $Var(X)$ .	[2]





Question	Answer	Marks	Guidance
(i)	6p + 0.1 = 1  p = 0.15	B1	Correct answer
		1	
(ii)	$Var(X) = 1 \times p + 1 \times 2p + 4 \times 2p + 16 \times 0.1 - 1.15^{2}$	M1	Correct unsimplified formula, their p substituted (allow 1 error)
	$0.15 + 0 + 0.3 + 1.2 + 1.6 - 1.15^{2}$ = 1.9275 = 1.93 (3sf)	A1	Correct answer
		2	







 $240.\ 9709_w18_qp_62\ Q:\ 3$ 

Jake attempts the crossword puzzle in his daily newspaper every day. The probability that he will complete the puzzle on any given day is 0.75, independently of all other days.

days.	[3
	<del>J</del>
. 89	







Kenny also attempts the puzzle every day. The probability that he will complete the puzzle on a Monday is 0.8. The probability that he will complete it on a Tuesday is 0.9 if he completed it on the previous day and 0.6 if he did not complete it on the previous day.

and Tuesday in a randomly chosen week.	[3
	C
X	
200	
	••••••
	•••••
	•••••





Question	Answer	Marks	Guidance
(i)	Method 1		
	$P(3) + P(4) + P(5) = {}^{5}C_{3} \ 0.75^{3} \times 0.25^{2} + $	M1	One binomial term ${}^5C_xp^x(1-p)^{5.x}$ , $x \ne 0$ or 5, any $p$
	$^{5}C_{4} \ 0.75^{4} \times 0.25^{1} + ^{5}C_{5} \ 0.75^{3} \times 0.25^{0}$	M1	Correct unsimplified expression
	= 0.26367 + 0.39551 + 0.23730 = 0.896 (459/512)	A1	Correct final answer, allow 0.8965 (isw) but not 0.897 alone
	Method 2		
	$1 - P(0) - P(1) - P(2) = 1 - {}^{5}C_{0} \ 0.75^{0} \times 0.25^{5}$	M1	One binomial term ${}^5C_xp^x(1-p)^{5x}$ , $x \neq 0$ or 5, any $p$
	$- {}^{5}C_{1} \ 0.75^{1} \times 0.25^{4} - {}^{5}C_{2} \ 0.75^{2} \times 0.25^{3}$	M1	Correct simplified expression
	= 1 - 0.00097656 - 0.014648 - 0.087891 = 0.896 (459/512)	A1	Correct final answer, allow 0.8965 (isw) but not 0.897 alone
		3	
Question	Answer	Marks	Guidance
(ii)	Method 1		
	P(C,C) + P(C,C') + P(C',C) 0.8 × 0.9	B1	Unsimplified prob completed on both days
	$0.8 \times 0.1 + 0.2 \times 0.6$	М1	Unsimplified prob $0.8 \times a + 0.2 \times b$ , $a = 0.1$ or $0.4$ , $b = 0.6$ or $0.9$
	= 0.92 oe	A1	Correct final answer
	Method 2		
	$1 - P(C',C') = 1 - 0.2 \times 0.4$	B1	Unsimplified prob completed on no days
		M1	$1 - 0.2 \times a$ , $a=0.1$ or 0.4 allow unsimplified
	= 0.92	A1	Correct final answer
		3	
$P(S,S') = \frac{4}{11}$	$\frac{7}{10} = \frac{28}{110}$	1	
$P(P,P') = \frac{2}{11}$	$\times \frac{9}{10} = \frac{18}{110}$		
$P(I,I') = \frac{4}{11} \times$	$\frac{7}{10} = \frac{28}{110}$		
$P(M,M') = \frac{1}{1}$	$\frac{1}{10} \times \frac{10}{10} = \frac{10}{110}$		
$Total = \frac{84}{110}$			
P(Same) = 1	$\frac{84}{110} = \frac{26}{110}$		
B1 one of pro	oducts correct f probabilities from 4 appropriate scenarios		
A1 Correct f			

$$P(S,S') = \frac{4}{11} \times \frac{7}{10} = \frac{28}{110}$$

$$P(P,P') = \frac{2}{11} \times \frac{9}{10} = \frac{18}{110}$$

$$P(I,I') = \frac{4}{11} \times \frac{7}{10} = \frac{28}{110}$$

$$P(M,M') = \frac{1}{11} \times \frac{10}{10} = \frac{10}{110}$$

$$Total = \frac{84}{110}$$





 $241.\ 9709_w18_qp_62\ \ Q:\ 6$ 

A fair red spinner has 4 sides, numbered 1, 2, 3, 4. A fair blue spinner has 3 sides, numbered 1, 2, 3. When a spinner is spun, the score is the number on the side on which it lands. The spinners are spun at the same time. The random variable X denotes the score on the red spinner minus the score on the blue spinner.

Draw up the probability distribution table for $X$ .	
	~~
	<b>(</b> 5)
**	





(ii)	Find $Var(X)$ .	3]
	<i>O</i> -	
	107	
(iii)	Find the probability that $X$ is equal to 1, given that $X$ is non-zero. [3]	3]
(iii)	Find the probability that $X$ is equal to 1, given that $X$ is non-zero. [3	3]
( <b>iii</b> )	Find the probability that $X$ is equal to 1, given that $X$ is non-zero.	3]
(iii)	Find the probability that <i>X</i> is equal to 1, given that <i>X</i> is non-zero.	3] 
(iii)	Find the probability that <i>X</i> is equal to 1, given that <i>X</i> is non-zero.	
(iii)	Find the probability that <i>X</i> is equal to 1, given that <i>X</i> is non-zero.	
(iii)	Find the probability that X is equal to 1, given that X is non-zero.	3]
(iii)		3]
(iii)		3]
(iii)		
(iii)		3]
(iii)		





# CHAPTER 4. DISCRETE RANDOM VARIABLES

Question	Answer		Marks	Guidance
(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cc} 2 & 3 \\ \hline \frac{2}{12} & \frac{1}{12} \end{array}$	B1	-2, -1, 0, 1, 2, 3 seen as top line of a pdf table with at least 1 probability OR attempting to evaluate P(-2), P(-1), P(0), P(1), P(2), P(3) (condone additional values with $p$ =0 stated)
			B1	At least 4 probs correct (need not be in table)
			B1	All probs correct in a table
			3	
(ii)	$E(X) = \frac{-2 \times 1 - 1 \times 2 + 0 + 1 \times 3 + 2 \times 2 + 1 \times 3}{12} = 0.$	5	M1	Unsimplified expression for mean using <i>their</i> pdf table (or correct) with at least 2 non-zero values (may be seen in variance). Numerator terms may be implied by values.
	$Var(X) = \frac{(-2)^2 \times 1 + (-1)^2 \times 2 + 1^2 \times 3 + 2^2 \times 2 + 1}{12}$	$\frac{3^2 \times 1}{} - \left(their  0.5\right)^2$	M1	Unsimplified expression for variance using <i>their</i> pdf table (or correct) with at least 2 non-zero values and <i>their</i> E(X). Numerator terms may be implied by values. If $-k^2$ is seen for $(-k)^2$ , the method must be confirmed by seeing value used correctly
	26/12 -1/4 = 23/12		A1	Correct final answer
			3	
Question	Answer		Marks	Guidance
(iii)	Method 1			40
	P(X  non-zero) = 9/12		B1ft	If Binomial distribution used $0/3$ P( $X$ non-zero) ft from <i>their</i> pdf table, $\Sigma p$ =1 oe
	$P(X=1 \mid X \text{ non-zero}) = \frac{P(X=1 \cap X \text{ non-zero})}{P(X \text{ non-zero})}$	$\frac{9}{9} = \frac{\frac{3}{12}}{\frac{9}{12}}$	M1	Their $P(X = 1)/their P(X \text{ non-zero})$ from their pdf table oe
	$P(X=1 \mid X \text{ non-zero}) = \frac{P(X=1 \cap X \text{ non-zero})}{P(X \text{ non-zero})}$ $= 1/3 \text{ oe}$	$\frac{99}{9} = \frac{\frac{3}{12}}{\frac{9}{12}}$	M1	Their $P(X = 1)$ /their $P(X \text{ non-zero})$ from their pdf table oe  Correct final answer www
		$\frac{1}{2} = \frac{3}{12}$		
	= 1/3 oe	2s = 1		
	= 1/3 oe  Method 2 $P(X=1 \mid X \text{ non-zero}) = Number of outcome}$	2s = 1	Al	Correct final answer www  Number of non-zero outcomes (expect 9) ft from <i>their</i> outcome
	= 1/3 oe  Method 2 $P(X=1 \mid X \text{ non-zero}) = Number of outcome}$	2s = 1	A1	Correct final answer www  Number of non-zero outcomes (expect 9) ft from <i>their</i> outcome table or pdf table numerators oe $a/b$ , $a = their 3$ from <i>their</i> outcome table or pdf table numerators,





 $242.\ 9709_w18_qp_63\ Q:\ 2$ 

A fair 6-sided die has the numbers -1, -1, 0, 0, 1, 2 on its faces. A fair 3-sided spinner has edges numbered -1, 0, 1. The die is thrown and the spinner is spun. The number on the uppermost face of the die and the number on the edge on which the spinner comes to rest are noted. The sum of these two numbers is denoted by X.

(1)	Draw up a table showing the probability distribution of $X$ .	[3]
		~~
		9
(ii)	Find $Var(X)$ .	[3]







x P(X=x)	$ \begin{array}{c c} -2 \\ \hline \frac{2}{18} \end{array} $	-1 4 18	0 5 18	1 4 18	2 2 18	3 1 18		В1	-2, -1, 0, 1, 2, 3 seen as top line of a pdf table OR attempting to evaluate P(-2), P(-1), P(0), P(1), P(2), P(3),
P(X=x)	2 18	4/18	5 18		2 18	1/18			
	18	18	18	18	18	18			
								B1	At least 4 probs correct (need not be in table)
								B1	All probs correct in a table
								3	
		Ans	wer					Marks	Guidance
$E(X) = \frac{-4 - 4 + 0 + 4}{18}$	4+4+	$\frac{-3}{6} = \frac{1}{6}$						M1	Correct unsimplified expression for the mean using their table, $\Sigma p = 1$ , may be implied
								M1	Correct, unsimplified expression for the variance using their table, and their mean 2 subtracted. Allow $\Sigma p \neq 1$
= 65/36, (1.	81)							A1	Correct answer
								3	101
			?	2				3	
_	$\operatorname{Var}(X) = \frac{8+4+0}{1}$ =11/6 - 1/3	$Var(X) = \frac{8+4+0+4+8}{18}$	=11/6 - 1/36 (1.8333 - 0. = 65/36, (1.81)	$ \operatorname{rar}(X) = \frac{8+4+0+4+8+9}{18} - \left(\frac{1}{6}\right)^{2} \\ = 11/6 - 1/36 (1.8333 - 0.02778) \\ = 65/36, (1.81) $	$ \operatorname{Tar}(X) = \frac{8+4+0+4+8+9}{18} - \left(\frac{1}{6}\right)^2 \\ = 11/6 - 1/36 (1.8333 - 0.02778) \\ = 65/36, (1.81) $	$ \operatorname{Tar}(X) = \frac{8+4+0+4+8+9}{18} - \left(\frac{1}{6}\right)^2 \\ = 11/6 - 1/36 (1.8333 - 0.02778) \\ = 65/36, (1.81) $	$ \operatorname{Tar}(X) = \frac{8+4+0+4+8+9}{18} - \left(\frac{1}{6}\right)^{2} \\ = 11/6 - 1/36 (1.8333 - 0.02778) \\ = 65/36, (1.81) $	$ \operatorname{Tar}(X) = \frac{8+4+0+4+8+9}{18} - \left(\frac{1}{6}\right)^{2} \\ = 11/6 - 1/36 (1.8333 - 0.02778) \\ = 65/36, (1.81) $	$(X) = \frac{18}{18} = \frac{1}{6}$ $Var(X) = \frac{8+4+0+4+8+9}{18} - \left(\frac{1}{6}\right)^2$ $= \frac{11}{6} - \frac{1}{36} (1.8333 - 0.02778)$ $= \frac{65}{36}, (1.81)$ A1





 $243.\ 9709_m17_qp_62\ Q:\ 2$ A bag contains 10 pink balloons, 9 yellow balloons, 12 green balloons and 9 white balloons. 7 balloons are selected at random without replacement. Find the probability that exactly 3 of them are green. [3]







Question	Answer	Marks	Guidance
	$\frac{^{12}C_{3}\times ^{28}C_{4}}{^{40}C_{7}}$	М1	Using combinations with attempt to evaluate 2 terms in num. and 1 in denom.
		M1	Correct numerator or denominator unsimplified
	= 0.242	A1	
	OR		
	$P(GGG) = \frac{12}{40} \times \frac{11}{39} \times \frac{10}{38} \times \frac{28}{37} \times \frac{27}{36} \times \frac{26}{35} \times \frac{25}{34} \times {}^{7}C_{3}$	М1	Multiplying 3 green probs with 4 non-green probs, without replacement
		M1	Multiplying by ⁷ C ₃
	= 0.242	A1	
	Total:	3	







 $244.\ 9709_m17_qp_62\ Q:\ 6$ 

Pack A consists of ten cards numbered 0, 0, 1, 1, 1, 1, 1, 3, 3, 3. Pack B consists of six cards numbered 0, 0, 2, 2, 2, 2. One card is chosen at random from each pack. The random variable X is defined as the sum of the two numbers on the cards.

(i)	Show that $P(X = 2) = \frac{2}{15}$ .	[2]
		•••••
		••••
		•••••
		•••••
<b></b>		
(11)	Draw up the probability distribution table for $X$ .	[4]
		•••••
		· • • • • • • • • • • • • • • • • • • •
		· • • • • •
		•••••
		•••••
		•••••
		•••••
		· • • • • •
		· • • • • •





# CHAPTER 4. DISCRETE RANDOM VARIABLES

***	
	••••••
	•••••
	•••••





Question			A	nswer				Marks	Guidance
(i)	P(2) = P(0,2)	)= 2/10	× 4/6					M1	Mult 2 probs seen (or complete listing of all options)
	= 2/15						AG	A1	Correct answer legit obtained
							Total:	2	
(ii)	x P(X=x)	0 2/30	5/30	2 4/30	3 13/30	5 6/30		B1	Correct values for $x$ in table. Any additional values must have $P(x)=0$ stated
								B1	One correct prob other than P(2) or P(3)
								B1	Correct P(3)
								B1	All correct
							Total:	4	
(iii)	P(A1 Sum 3	$P(x) = \frac{P(x)}{x}$	Al ∩Sur P(Sum3)	$\frac{n3)}{n} = \frac{5}{n}$	10×4/6 13/30	5		M1	Attempt at $P(A1 \cap \text{Sum 3})$ as num or denom of a fraction, can be by counting
								M1	Their P(3) from (ii) as num or denom of a fraction
	= 10/13(0.76	69)						A1	
							Total:	3	
	***				2		23		







 $245.\ 9709_s17_qp_61\ \ Q:\ 5$ 

Eggs are sold in boxes of 20.	Cracked eggs occur	rindependently	and the r	nean number	of cracked
eggs in a box is 1.4.					

Calculate the probability that a randomly chosen box contains exactly 2 cracked eggs.	[3]
29	
	••••••
	· • • • • • • •
	••••••
	•••••
	•••••
	•••••





Calculate the p					
•••••			••••••		
					• • • • • • • •
	······				
					•••••
					• • • • • • • • • • • • • • • • • • • •
				100	•••••
				.07	•••••
					•••••
				<u>)                                    </u>	
A shop sells <i>n</i> there being at le	of these boxes o	of eggs. Find the	e smallest value o old is less than 0	of $n$ such that the properties of $n$ .	babili
shop sells <i>n</i> onere being at le	of these boxes o east 1 cracked eg	of eggs. Find the	old is less than 0	of <i>n</i> such that the prob.01.	
A shop sells <i>n</i> onere being at le	of these boxes o	of eggs. Find the	old is less than 0	.01.	
A shop sells <i>n</i> onere being at le	east 1 cracked eg	of eggs. Find the	old is less than 0	.01.	
A shop sells <i>n</i> chere being at le	of these boxes of east 1 cracked eg	of eggs. Find the	old is less than 0	.01.	
A shop sells <i>n</i> chere being at le	east 1 cracked eg	of eggs. Find the	old is less than 0	.01.	
A shop sells <i>n</i> there being at least	east 1 cracked eg	of eggs. Find the	old is less than 0	.01.	
A shop sells <i>n</i> chere being at le	east 1 cracked eg	of eggs. Find the	old is less than 0	.01.	
A shop sells <i>n</i> chere being at le	east 1 cracked eg	of eggs. Find the	old is less than 0	.01.	
A shop sells <i>n</i> there being at le	east 1 cracked eg	of eggs. Find the	old is less than 0	.01.	
A shop sells <i>n</i> chere being at le	east 1 cracked eg	of eggs. Find the	old is less than 0	.01.	
A shop sells not here being at le	east 1 cracked eg	of eggs. Find the	old is less than 0	.01.	







(i)	p = 0.07	В1	
	$P(2) = {}^{20}C_2(0.07)^2(0.93)^{18}$	М1	Bin term ${}^{20}C_x p^x (1-p)^{20-x}$ their $p$
	= 0.252	A1	
	Total:	3	
(ii)	P(at least 1 cracked egg)=1-(0.93) ²⁰ =1-0.2342	M1	Attempt to find P(at least1 cracked egg) with their $p$ from (i) allow $1 - P(0, 1)$ OE
	= 0.766	A1	Rounding to 0.766
	Total:	2	
(iii)	$(0.7658)^{n} < 0.01$	M1	Eqn or inequal containing (their 0.766) ⁿ or (their 0.234) ⁿ , together with 0.01 or 0.99
	n = 18	A1	
	Total:	2	







 $246.\ 9709_s17_qp_62\ Q:\ 3$ 

In a probability distribution the random varia	ble $X$ takes the	he value $x$ with pro	obability $kx^2$ ,	where $k$ is
a constant and x takes values $-2$ , $-1$ , 2, 4 onl	у.			

( <b>i</b> )	Show that $P(X = -2)$ has the same value as $P(X = 2)$ .	[1]
(ii)	Draw up the probability distribution table for $X$ , in terms of $k$ , and find the value of $k$ .	[3]
	<b>100</b>	
(iii)	Find $E(X)$ .	[2]







(i)	$k(-2)^2$ is the same as $k(2)^2 = 4k$	B1	need to see $-2^2 k$ , $2^2 k$ and $4k$ , algebraically correct expressions OE
	Total:	1	
(ii)		B1	-2, $-1$ , $2$ , $4$ only seen in a table, together with at least one attempted probability involving $k$
	4k + k + 4k + 16k = 1		Summing 4 probs equating to 1. Must all be positive (table not required)
	k = 1/25 (0.04)	A1	cwo
	Total:	3	
(iii)	E(X) = -8k + -k + 8k + 64k = 63k	M1	using $\Sigma px$ unsimplified. FT their $k$ substituted before this stage, no inappropriate dividing
	= 63/25 (2.52)		
	Total:	2	







 $247.\ 9709_s17_qp_62\ Q{:}\ 4$ 

Two identical biased triangular spinners with sides marked 1, 2 and 3 are spun. For each spinner, the probabilities of landing on the sides marked 1, 2 and 3 are $p$ , $q$ and $r$ respectively. The score is the sum of the numbers on the sides on which the spinners land. You are given that P(score is 6) = $\frac{1}{36}$ and
P(score is 5) = $\frac{1}{9}$ . Find the values of $p$ , $q$ and $r$ . [6]
<b>10</b> °
70





Question	Answer	Marks	Guidance
4	P(score is 6) = P(3, 3)	M1	Realising that score 6 is only P(3, 3)
		A1	Correct ans [SR <b>B2</b> $r = 1/6$ without workings]
	P(2, 3) + P(3, 2) = 1/9 qr + rq = 1/9	M1	Eqn involving $qr$ (OE) equated to 1/9 ( $r$ may be replaced by $their$ 'r value')
	q/6 + q/6 = 1/9	M1	Correct equation with their 'r value' substituted
	q = 1/3	A1	Correct answer seen, does <b>not</b> imply previous M's
	p = 1 - 1/6 - 1/3 = 1/2	B1 FT	FT their $p$ + their $r$ + their $q$ =1 , $0$
	Total:	6	







 $248.\ 9709_s17_qp_62\ \ Q:\ 7$ 

During the school holidays, each day Khalid either rides on his bicycle with probability 0.6, or on his skateboard with probability 0.4. Khalid does not ride on both on the same day. If he rides on his bicycle then the probability that he hurts himself is 0.05. If he rides on his skateboard the probability that he hurts himself is 0.75.

(1)	Find the probability that Khalid hurts himself on any particular day.	[2]
	~~~	
(ii)	Given that Khalid hurts himself on a particular day, find the probability that he is riding or skateboard.	n his [2]
	**	
		•••••
		•••••
		•••••
		• • • • • • •

(iii)	There are 45 days of school holidays. Show that the variance of the number of days Khalid rides on his skateboard is the same as the variance of the number of days that Khalid rides on his bicycle. [2]
	.0
(iv)	Find the probability that Khalid rides on his skateboard on at least 2 of 10 randomly chosen days
	in the school holidays. [3]

Question	Answer	Marks	Guidance
(i)	$P(H) = P(BH) + P(SH) = 0.6 \times 0.05 + 0.4 \times 0.75$	М1	Summing two 2-factor probs using 0.6 with 0.05 or 0.95, and 0.4 with 0.75 or 0.25
	$= 0.330 \text{ or } \frac{33}{100}$	A1	Correct final answer accept 0.33
	Total:	2	
(ii)	$P(S H) = \frac{P(S \cap H)}{P(H)} = \frac{0.4 \times 0.75}{0.33} = \frac{0.3}{0.33}$	M1 FT	Their $\frac{P(S \cap H)}{P(H)}$ unsimplified, FT from (i)
	$=\frac{10}{11}$ or 0.909	A1	
	Total:	2	
(iii)	Var (B) = 45×0.6×0.4 Var (S)= 45×0.4×0.6	B1	One variance stated unsimplified
	Variances same	В1	Second variance stated unsimplified and at least one variance clearly identified, and both evaluated or showing equal or conclusion made
			SR B1 – Standard Deviation calculated Fulfil all the criteria for the variance method but calculated to Standard Deviation
	Total:	2	
Question	Answer	Marks	Guidance
(iv)	$\begin{vmatrix} 1 - P(0, 1) \\ = 1 - [(0.6)^{10} + {}^{10}C_1(0.4)(0.6)^9] = 1 - 0.0464 \end{vmatrix}$ OR	M1 M1	Bin term 10 C _x $p^x(1-p)^{10-x}$ 0 < p < 1 Correct unsimplified answer
	$ P(2.3.4.5.6.7.8.9.10) = {}^{10}C_2(0.4)^2(0.6)^8 + \dots + {}^{10}C_9(0.4)^9(0.6) + (0.4)^{10} $		
	= 0.954	A1	
	Total:	3	

Use a binomial distribution to find the probability that, over the next 10 4 or fewer puzzles in exactly 3 of the 10 weeks.	[3]
	40
	•••••
VO.0.	

Question	Answer	Marks	Guidance	
(i)	constant probability (of completing)	B1	Any one condition of these two	
	independent trials/events	B1	The other condition	
	Totals:	2		
(ii)	$P(5, 6, 7) = {}^{7}C_{5}(0.7)^{5}(0.3)^{2} + {}^{7}C_{6}(0.7)^{6}(0.3)^{1} + (0.7)^{7}$	M1 A1	Bin term ${}^{7}C_{x}(0.7)^{x}(0.3)^{7.x}, x \neq 0, 7$ Correct unsimplified answer (sum) OE	
	= 0.647	A1		
	Total:	3		
(iii)	P(0, 1, 2, 3, 4) = 1 - their '0.6471' = 0.3529	М1	Find P(\leq 4) either by subtracting their (ii) from 1 or from adding Probs of 0,1,2,3,4 with n =7 (or 10) and p = 0.7	
	$P(3) = {}^{10}C_3(0.3529)^3(0.6471)^7$	M1	$^{10}\text{C}_3 \text{ (their } 0.353)^3 (1 - \text{their } 0.353)^7 \text{ on its own}$	
	= 0.251	A1	O.	
	Palpa Cambrilo.			

 $250.\ 9709_s17_qp_63\ Q:\ 6$

Fino	Find how many numbers between 3000 and 5000 can be formed from the digits 1, 2, 3, 4 and 5,					
(i)	if digits are not repeated, [2]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					
(ii)	if digits can be repeated and the number formed is odd. [3]					

CHAPTER 4. DISCRETE RANDOM VARIABLES

[2
, ,
•••••
•••••
[4
•••••
•••••

(a)(i)	First digit in 2 ways. $2 \times 4 \times 3 \times 2$ or $2 \times 4P3$	M1	1, 2 or 3 \times 4P3 OE as final answer
	Total = 48 ways	A1	
	Total:	2	
(a)(ii)	$2 \times 5 \times 5 \times 3$	M1 M1	Seeing 5 ² mult; this mark is for correctly considering the middle two digits with replacement Mult by 6; this mark is for correctly considering the first and last digits
	= 150 ways	A1	
	Totals:	3	
Question	Answer	Marks	Guidance
(b)(i)	OO**** in ¹⁸ C ₄ ways	M1	18 C _x or the sum of five 2-factor products with $n = 14$ and 4, may be x by 2C2: 4 C0 × 14C4 + 4C1 × 14C3 + 4C2 × 14C2 + 4C3 × 14C1 + 4C4 (× 14C0)
	= 3060	A1	
	Totals:	2	10)
Question	Answer	Marks	Guidance
(b)(ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	В1	The correct number of ways with one of 0, 1 or 2 chocs, unsimplified or any three correct number of ways of combining choc/oat/ginger, unsimplified
	Total = 36400 ways	M1	sum the number of ways with 0, 1 and 2 chocs and two must be totally correct, unsimplified OR sum the nine combinations of choc, ginger, oats, six must be totally correct, unsimplified
	Probability = $36400/{}^{20}C_6$	M1	dividing by ²⁰ C ₆ (38760) oe
	= 0.939 (910/969)	A1	
	Totals	4	

251. 9709_w17_qp_61 Q: 1

The discrete random variable X has the following probability distribution.

х	1	2	3	6
P(X = x)	0.15	p	0.4	q

Given that $E(X) = 3.05$, find the values of p and q .	[4]
	40
• 6	
**	

Question	Answer	Marks	Guidance
	p+q=0.45	M1	Equation involving $\Sigma P(x) = 1$
	0.15 + 2p + 1.2 + 6q = 3.05	M1	Equation using $E(X) = 3.05$
	q = 0.2	M1	Solving simultaneous equations to one variable
	p = 0.25	A1	Both answers correct
		4	

252. 9709_w17_qp_61 Q: 3

An experiment consists of throwing a biased die 30 times and noting the number of 4s obtained. This
experiment was repeated many times and the average number of 4s obtained in 30 throws was found
to be 6.21.

(i)	Estimate the probability of throwing a 4.	[1]
Hen	ace	
(ii)	find the variance of the number of 4s obtained in 30 throws,	[1]
		,
(iii)	find the probability that in 15 throws the number of 4s obtained is 2 or more.	[3]
		,
	0	
		· • • • • • • • • • • • • • • • • • • •

Question	Answer	Marks	Guidance
(i)	p = 0.207	В1	
		1	
(ii)	$Var = 30 \times 0.207 \times 0.793 = 4.92$	B1	
		1	
(iii)	$P(\geqslant 2) = 1 - P(0, 1)$	M1	
	$= 1 - (0.793)15 - \binom{15}{1}(0.207)(0.793)14$	М1	1 - P(0, 1) seen $n = 15 p = $ any prob
	= 0.848	A1	
		3	

 $253.\ 9709_w17_qp_62\ Q:\ 3$

A box contains 6 identical-sized discs, of which 4 are blue and 2 are red. Discs are taken at random from the box in turn and not replaced. Let *X* be the number of discs taken, up to and including the first blue one.

(i)	Show that $P(X = 3) = \frac{1}{15}$.	[2]
		<u> </u>
		<u>)</u>
(ii)	Draw up the probability distribution table for X .	[3]
(11)	Braw up the produciney distribution date for A.	
	**	

Question	Answer	Marks	Guidance
(i)	EITHER: $P(X = 3) = P(RRB) = \frac{2}{6} \times \frac{1}{5} \times \frac{4}{4}$	(M1	probabilities in order $\frac{2}{p} \times \frac{1}{q} \times \frac{4}{r}$, $p, q, r \le 6$ and $p \ge q \ge r, r \ge 4$, accept \times 1 as $\frac{4}{r}$.
	$=\frac{1}{15}$ AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
	OR1: $P(X = 3) = P(RRB) = \frac{{}^{2}C_{2}}{{}^{6}C_{2}} \times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$	(M1	probabilities stated clearly, \times $\frac{^4C_1}{^4C_1}$ or \times 1 or \times $\frac{4}{4}$ included
	$=\frac{1}{15}$ AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
	OR2: $P(X=3) = P(RRB) = \frac{{}^{2}C_{1}}{{}^{6}C_{1}} \times \frac{{}^{1}C_{1}}{{}^{5}C_{1}} \times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$	(M1	probabilities in order $\frac{^2C_1}{^pC_1} \times \frac{^1C_1}{^qC_1} \times \frac{^4C_1}{^rC_1} p, q, r \leqslant 6$ and $p \geqslant q \geqslant r, r \geqslant 4$ $(\times \frac{^4C_1}{^4C_1} \text{ or } \times 1 \text{ or } \times \frac{4}{4} \text{ acceptable})$
	= 1/15 AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
		2	40
Question	Answer	Marks	Guidance
(ii)	$P(1) = P(B) = \frac{4}{6} \left(\frac{2}{3} = 0.667 \right)$	B1	Probability distribution table drawn with at least 2 correct x values and at least 1 probability. All probabilities $0 \le p < 1$.
	$P(2) = P(RB) = \frac{2}{6} \times \frac{4}{5} = \frac{4}{15} (= 0.267)$	В1	P(1) or P(2) correct unsimplified, or better, and identified.
	$P(3) = P(RRB) = \frac{2}{6} \times \frac{1}{5} \times \frac{4}{4} = \frac{1}{15} (= 0.0667)$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1	All probabilities in table, evaluated correctly OE. Additional x values must have a stated probability of 0
		3	

 $254.\ 9709_w17_qp_62\ Q:\ 4$

A fair tetrahedral die has faces numbered 1, 2, 3, 4. A coin is biased so that the probability of showing a head when thrown is $\frac{1}{3}$. The die is thrown once and the number n that it lands on is noted. The biased coin is then thrown n times. So, for example, if the die lands on 3, the coin is thrown 3 times.

	Find the probability that the die lands on 4 and the number of times the coin shows heads is 2. [3]
(ii)	Find the probability that the die lands on 3 and the number of times the coin shows heads is 3.
	[1]
(iii)	Find the probability that the number the die lands on is the same as the number of times the coin
	shows heads. [3

255. $9709_w17_qp_63$ Q: 1

A statistics student asks people to complete a survey. The probability that a randomly chosen person agrees to complete the survey is 0.2. Find the probability that at least one of the first three people asked agrees to complete the survey.

Answer	Marks	Guidance
EITHER: P(at least 1 completes) = $1 - P(0 \text{ people complete})$ = $1 - (0.8)^3$	(M1	Fully correct unsimplified expression $1 - (0.8)^3$ OE
$=0.488\left(\frac{61}{125}\right)$	A1)	
OR1: P(1, 2, 3) = ${}^{3}C_{1}(0.2)(0.8)^{2} + {}^{3}C_{2}(0.2)^{2}(0.8) + (0.2)^{3}$	(M1	Unsimplified correct 3 term expression
$=0.488\left(\frac{61}{125}\right)$	A1)	
OR2: 0.2+0.8×0.2+0.8×0.8×0.2	(M1	Unsimplified sum of 3 correct terms
$=0.488\left(\frac{61}{125}\right)$	A1)	
	2	0.
PaR	C	31

 $256.\ 9709_w17_qp_63\ Q\hbox{:}\ 4$

A fair die with faces numbered 1, 2, 2, 2, 3, 6 is thrown. The score, X, is found by squaring the number on the face the die shows and then subtracting 4.

(i)	Draw up a table to show the probability distribution of X .	[3]
		••••••
		<u></u>
		2
)
(ii)	Find $E(X)$ and $Var(X)$.	[3]
		••••••
	**	
		•••••

Question	Answer						Marks	Guidance
(i)	x -3 0 5 32		B1	At least 3 different correct values of X (can be unsimplified)				
	Prob	1/6	1/2	1/6	1/6]	B1	Four correct probabilities in a Probability Distribution table
							B1	Correct probs with correct values of X
							3	
Question	Answer						Marks	Guidance
(ii)	E(X) = -	3/6 + 5/6 +	32/6 = 34/	6 = 17/3 (5.67)		M1	Subst their attempts at scores in correct formula as long as 'probs' sum to 1
	Var(X) =	9/6 + 25/6	+ 1024/6 -	- (34/6) ²			M1	Subst their attempts at scores in correct var formula
	$=144\left(\frac{1298}{9}\right)$						A1	Both answers correct
			3					

$$257.\ 9709_m16_qp_62\ Q:\ 2$$

A flower shop has 5 yellow roses, 3 red roses and 2 white roses. Martin chooses 3 roses at random. Draw up the probability distribution table for the number of white roses Martin chooses. [4]

Answer:

	1					
2	No of W	0	1	2	B1	0, 1, 2, seen in table with attempt at prob.
	Prob	42/90	42/90	6/90	-	
	P(0) = 8/10 P(1W) = P(1W)			× 8/0 × 7/8	M1	3-factor prob seen with different denoms.
	$\times 3$,1N VV , 1N VV) ^ 3 — 2/10	~ 0/ <i>9</i> ~ ///0	M1	Mult by 3
	= 42 $P(2W) = P(3)$		$\times 3 = 2/10$	× 1/9 × 8/8	A1 4	All correct
	$\times 3$ = 6/9	90		Ó.		

$$258.\ 9709_s16_qp_61\ Q:\ 2$$

The faces of a biased die are numbered 1, 2, 3, 4, 5 and 6. The random variable X is the score when the die is thrown. The following is the probability distribution table for X.

• /	X	1	2	3	4	5	6
* 3	P(X = x)	p	p	p	p	0.2	0.2

The die is thrown 3 times. Find the probability that the score is 4 on not more than 1 of the 3 throws.

[5]

2	P (throwing a 4) = $(1 - 0.4) / 4$ = 0.15	M1 A1	Sensible attempt to find P(1) Correct answer
	P(at most 1) = P(0, 1) or 1 – P(2, 3) = $(0.85)^3 + {}^3C_1 (0.15) (0.85)^2$	M1 M1	A binomial term with ${}^{3}C_{n}$ oe any p Binomial expression with ${}^{3}C_{n}$ P(0, 1) or $1 - P(2, 3)$ p = 0.15 or 0.85
	= 0.939	A1 [5]	7 0.10 01 0.00

A box contains 2 green sweets and 5 blue sweets. Two sweets are taken at random from the box, without replacement. The random variable X is the number of green sweets taken. Find E(X) and Var(X).

Answer:

260. 9709 s16 qp 62 Q:
$$3$$

A particular type of bird lays 1, 2, 3 or 4 eggs in a nest each year. The probability of x eggs is equal to kx, where k is a constant.

- (i) Draw up a probability distribution table, in terms of k, for the number of eggs laid in a year and find the value of k.
- (ii) Find the mean and variance of the number of eggs laid in a year by this type of bird. [3]

3	(i)							
		x	1	2	3	4	B1	Probability Distribution Table, either <i>k</i> or
		P(x)	<i>k</i>	2k	3 <i>k</i>	4k	M1	correct numerical values Summing probs involving k to = 1, 3 or 4
		10k = 1					1411	terms
		k = 1/10					A1 [3]	
	(ii)	$E(X) = 1/10 + 4/10 + 9/10 + 16/10 = 3$ $Var(X) = 1/10 + 8/10 + 27/10 + 64/10 - 3^{2}$						Correct mean Correct method seen for var, their k and μ
		= 1					A1 [3]	

When people visit a certain large shop, on average 34% of them do not buy anything, 53% spend less than \$50 and 13% spend at least \$50.

- (i) 15 people visiting the shop are chosen at random. Calculate the probability that at least 14 of them buy something. [3]
- (ii) n people visiting the shop are chosen at random. The probability that none of them spends at least \$50 is less than 0.04. Find the smallest possible value of n. [3]

Answer:

4 (i)	$p = 0.66X \sim B(15, 0.66)$	M1	Bin term 15 C _x $p^x(1-p)^{15-x}$ seen any p
	P(at least 14) = P(14, 15) = ${}^{15}C_{14} (0.66)^{14} (0.34) + (0.66)^{15}$	M1	Unsimplified correct expression for
	= 0.0171	A1 [3]	P(14,15)
an an	(0.05)] . 0.04	3.5	
(ii)	$(0.87)^{n} < 0.04$	M1 M1	Eqn involving 0.87, power of n, 0.04 only Solving by logs or trial and error(can be
			implied).
	n = 24	A1 [3]	Must be exponential equation

Two ordinary fair dice are thrown. The resulting score is found as follows.

- If the two dice show different numbers, the score is the smaller of the two numbers.
- If the two dice show equal numbers, the score is 0.
- (i) Draw up the probability distribution table for the score.
- (ii) Calculate the expected score. [2]

Answer:

(i)	P(0) = 6/36, P(1) = 10/36, P(2) = 8/36	B1		Table oe seen with 0, 1, 2, 3, 4, 5 (6 if $P(6) = 0$)
	P(3) = 6/36, P(4) = 4/36, P(5) = 2/36	B1 M1 A1	[4]	Any three probs correct $\Sigma p = 1 \text{ and at least 3 outcomes}$ All probs correct
(ii)	mean score = $(0 \times 6 + 1 \times 10 + 16 + 18 + 16 + 10)/36$	M1		Using $\sum xp$ (unsimplified) on its own – condone
	= 70/36 (35/18, 1.94)	A1	[2]	$\sum p \text{ not} = 1$

The random variable X is such that $X \sim N(20, 49)$. Given that P(X > k) = 0.25, find the value of k.

[3]

[4]

z = 0.674	M1		±0.674 seen
$0.674 = \frac{k - 20}{7}$	M1		Standardising no cc, no sq, no
k = 24.7	A1	[3]	sq rt

$$264.\ 9709_w16_qp_61\ Q:\ 2$$

Two fair six-sided dice with faces numbered 1, 2, 3, 4, 5, 6 are thrown and the two scores are noted. The difference between the two scores is defined as follows.

- If the scores are equal the difference is zero.
- If the scores are not equal the difference is the larger score minus the smaller score.

Find the expectation of the difference between the two scores.

[5]

Answer:

2	diff	0	1	2	3	4	5		B1		0, 1, 2, 3, 4, 5 seen in table
	prob	6/36	10/36	8/36	6/36	4/36	2/36			X	heading or considering all different differences
									M1	2	Attempt at finding prob of any difference
	Expectation = $(0+10+16+18+16+10)/36$										1 correct prob Probs summing to 1
			= 70/36 = 1.94				- 0		A1	[5]	

Visitors to a Wildlife Park in Africa have independent probabilities of 0.9 of seeing giraffes, 0.95 of seeing elephants, 0.85 of seeing zebras and 0.1 of seeing lions.

- (i) Find the probability that a visitor to the Wildlife Park sees all these animals. [1]
- (ii) Find the probability that, out of 12 randomly chosen visitors, fewer than 3 see lions. [3]
- (iii) 50 people independently visit the Wildlife Park. Find the mean and variance of the number of these people who see zebras. [2]

(i)	$0.9 \times 0.95 \times 0.85 \times 0.1 = 0.0727$	B1	[1]	
(ii)	P(0, 1, 2)	M1		Bin term $^{12}C_x(p)^x(1-p)^{12-x}$ p < 1. $x \neq 0$
	$= (0.9)^{12} + {}^{12}C_1 (0.1)(0.9)^{11} + {}^{12}C_2 (0.1)^2 (0.9)^{10}$	M1		Bin expression $p = 0.1$ or 0.9 , $n = 12, 2$ or 3 terms
	= 0.889	A1	[3]	12, 2 01 3 terms
(iii)	$X \sim \mathrm{B}(50, 0.85)$	M1		50 × 0.85 seen oe can be implied
	Expectation = 50×0.85 (= 42.5) $Var = 50 \times 0.85 \times 0.15$ (= 6.375)	A1	[2]	Correct unsimplified mean and var

Noor has 3 T-shirts, 4 blouses and 5 jumpers. She chooses 3 items at random. The random variable *X* is the number of T-shirts chosen.

(i) Show that the probability that Noor chooses exactly one T-shirt is
$$\frac{27}{55}$$
. [3]

(ii) Draw up the probability distribution table for
$$X$$
. [4]

Answer:

2 (i)	P(1 T-sh	$irt) = \frac{{}^{3}C_{1}}{{}^{1}}$	$\frac{\times {}^{9}C_{2}}{{}^{2}C_{3}}$				B1 B1		Correct num unsimplified Correct denom unsimplified
	= 27/	55			A	ΔG	B1	[3]	Answer given, so process needs to be convincing
	OR $3/12 \times 9/11 \times 8/10 \times {}^{3}C_{1}$ oe = $27/55$ AG								Mult 3 probs diff denoms (not a/3 x b/4 x c/5) Mult by 3C_1 oe Answer given, so process needs to be convincing
(ii)	X Prob	0 84/220	1 27/55	2 27/220	3 1/220		B1 B1 B1 B1√	[4]	0, 1, 2, 3 only seen in top line (condone additional values if Prob stated as 0) One correct prob, correctly placed in table One other correct prob, correctly placed in table One other correct prob ft $\Sigma p = 1$, 4 values in table

A fair triangular spinner has three sides numbered 1, 2, 3. When the spinner is spun, the score is the number of the side on which it lands. The spinner is spun four times.

Answer:

(i)	$p = 1/3$ $P(\geqslant 2) = 1 - P(0, 1) = 1 - (2/3)^4 - {}^4C_1(1/3)(2/3)^3$ or $P(2,3,4) = {}^4C_2(1/3)^2(2/3)^2 + {}^4C_3(1/3)^3(2/3) + (1/3)^4$ $= \frac{11}{27}, 0.407$	M1 M1 A1	[3]	Bin term ${}^4C_xp^x(1-p)^{4-x}$ $0Correct unsimplified answer$
(ii)	P(sum is 5) = P(1, 1, 1, 2) ×4 = $(1/3)^4 \times 4$ = $\frac{4}{81}$, 0.0494	M1 M1 A1	[3]	1, 1, 1, 2 seen or 4 options Mult by (1/3) ⁴

268.
$$9709_s15_qp_62$$
 Q: 1

A fair die is thrown 10 times. Find the probability that the number of sixes obtained is between 3 and 5 inclusive. [3]

1	P(3, 4, 5) =	M1	Bin expression of form ${}^{10}C_x(p)^x(1-p)^{10-x}$ any x any p
	$\begin{vmatrix} {}^{10}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{7} + {}^{10}C_{4}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{6} + {}^{10}C_{5}\left(\frac{1}{6}\right)^{5} \\ \left(\frac{5}{6}\right)^{5} \end{vmatrix}$	A1	Correct unsimplified answer accept (0.17, 0.83), (0.16, 0.84), (0.16, 0.83), (0.17, 0.84) or more accurate
	(6)	A1 3	Correct answer
	= 0.222		

A box contains 5 discs, numbered 1, 2, 4, 6, 7. William takes 3 discs at random, without replacement, and notes the numbers on the discs.

(i) Find the probability that the numbers on the 3 discs are two even numbers and one odd number. [3]

The smallest of the numbers on the 3 discs taken is denoted by the random variable S.

(ii) By listing all possible selections (126, 246 and so on) draw up the probability distribution table for *S*. [5]

(i)	P(2Es 1O) = $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times ^{3}C_{2} = \frac{3}{5}$ (0.6) OR	M1 M1 A1 3	5×4×3 seen in denom Mult a prob by ³ C ₂ oe Correct answer
	P(2Es 1O) = $\frac{{}^{3}C_{2} \times {}^{2}C_{1}}{{}^{5}C_{3}} = \frac{6}{10}$	M1	${}^{3}C_{x}$ or ${}^{y}C_{2}$ or ${}^{2}C_{1}$ oe seen mult by $k \ge 1$ in num
	= 0.6 OR	M1 A1	⁵ C ₃ seen in denom Correct answer
•	241, 247, 261, 267, 461, 467 = 6 options 124 126 127 146 147 167 246 247 267 467 Prob = 6/10	M1 M1 A1	List at least 3 of 241, 247, 261, 267, 461, 467 $^5\mathrm{C}_3$ or list to get all 10 options in denom see below Correct answer
(ii)	124 126 127 146 147 167 246 247 267 467 S 1 2 4 P(S=s) 6/10 3/10 1/10	M1 A1 B1 B1 B1 5	Attempt at listing with at least 7 correct All correct and no others or all 60 1, 2, 4 only seen in top row Any two correct All correct

 $270.\ 9709_s15_qp_63\ Q:\ 2$

When Joanna cooks, the probability that the meal is served on time is $\frac{1}{5}$. The probability that the kitchen is left in a mess is $\frac{3}{5}$. The probability that the meal is not served on time and the kitchen is not left in a mess is $\frac{3}{10}$. Some of this information is shown in the following table.

	Kitchen left in a mess	Kitchen not left in a mess	Total
Meal served on time			$\frac{1}{5}$
Meal not served on time		$\frac{3}{10}$	
Total			1

(i) Copy and complete the table.

[3]

(ii) Given that the kitchen is left in a mess, find the probability that the meal is not served on time.

[2]

Answer:

(i)						V	All values may be decimals or %
	On time Not on	Kitchen mess 1/10 1/2	Kitchen not mess 1/10	Total	B1 B1		2 probabilities correct 2 further probabilities correct
	time Total	3/5	4/10		B1	[3]	2 further probabilities correct
; (ii)	P(not on tin	ne given kito	chen mess) =	$=\frac{1/2}{3/5}$	M1		A cond prob fraction seen (using corresponding combined outcomes
		= 5/6 o.e.	20		A1	[2]	and total) FT from their values, 3sf or better, <1, 3/5ft<1

271. 9709_s15_qp_63 Q: 4

A pet shop has 9 rabbits for sale, 6 of which are white. A random sample of two rabbits is chosen without replacement.

- (i) Show that the probability that exactly one of the two rabbits in the sample is white is $\frac{1}{2}$. [2]
- (ii) Construct the probability distribution table for the number of white rabbits in the sample. [3]
- (iii) Find the expected value of the number of white rabbits in the sample. [1]

(i)	$P(1 \text{ W}) = 6/9 \times 3/8 + 3/9 \times 6/8$	M1	summing 2 two-factor probs (condone replacement) not ½×½ + ½×½
	$= \frac{1}{2} AG$	A1 [2]	Correct answer, fully justified
	OR $\frac{{}^{6}C_{1} \times {}^{3} C_{1}}{{}^{9}C_{2}}$	M1	Using combinations consistent, correct format
	$= \frac{1}{2} AG$	A1	Correct answer, fully justified
(ii)	$P(\overline{W}, \overline{W}) = 3/9 \times 2/8 = 6/72 (1/12)$ $P(W, W) = 6/9 \times 5/8 = 30/72 (5/12)$	B1	Distribution table with 0,1,2 only
	$P(W,W) = 6/9 \times 5/8 = 30/72 (5/12)$ $x = 0 = 1 = 2$	B1	$P(W,W)$ or $P(\overline{W},\overline{W})$ correct
	Prob 1/12 1/2 5/12	B1 √ [3]	$P(W,W) + P(\overline{W},\overline{W}) = 0.5$
(iii)	E(X) = 16/12 (4/3) (1.33) isw	B1 [1]	Condone 1(.3) if correct working seen, nfww

272. 9709
$$_{\rm w}15_{\rm qp}_{\rm 61}$$
 Q: 1

In a certain town, 76% of cars are fitted with satellite navigation equipment. A random sample of 11 cars from this town is chosen. Find the probability that fewer than 10 of these cars are fitted with this equipment.

Answer:

$p = 0.76$ P(fewer than 10) = 1 - P(10, 11) $= 1 - (0.76)^{10}(0.24)^{11}C_{10} - (0.76)^{11}$ $= 1 - 0.219$ $= 0.781$	M1 M1 M1 A1 [4]	Any binomial term $^{11}C_xp^x(1-p)^{11-x}$, $0 Any binomial term ^nC_x(0.76)^x(0.24)^{n-x} 1 - P(10, 11) oe binomial expression$
		Correct answer

(a) Amy measured her pulse rate while resting, x beats per minute, at the same time each day on 30 days. The results are summarised below.

$$\Sigma(x - 80) = -147$$
 $\Sigma(x - 80)^2 = 952$

Find the mean and standard deviation of Amy's pulse rate.

(b) Amy's friend Marok measured her pulse rate every day after running for half an hour. Marok's pulse rate, in beats per minute, was found to have a mean of 148.6 and a standard deviation of 18.5. Assuming that pulse rates have a normal distribution, find what proportion of Marok's pulse rates, after running for half an hour, were above 160 beats per minute. [3]

[4]

[3]

Answer:

(i)	$\overline{x} = 80 - 147/30 = 80 - 4.9$ = 75.1	M1 A1	For –147/30 oe seen Correct answer
	$sd = \sqrt{\frac{952}{30} - \left(\frac{147}{30}\right)^2} = \sqrt{7.72}$	M1	$952/30 - (\pm \text{ their coded mean})^2$
	sd = 2.78	A1 [4]	Correct answer
(ii)	$P(x > 160) = P\left(z > \frac{160 - 148.6}{18.5}\right)$	M1	Standardising no cc no sq rt
	= P(z > 0.616) $= 1 - 0.7310$	M1	$1-\Phi$
	= 0.269	A1 [3]	Correct answer

 $274.\ 9709_w15_qp_61\ Q: 6$

Nadia is very forgetful. Every time she logs in to her online bank she only has a 40% chance of remembering her password correctly. She is allowed 3 unsuccessful attempts on any one day and then the bank will not let her try again until the next day.

- (i) Draw a fully labelled tree diagram to illustrate this situation.
- (ii) Let X be the number of unsuccessful attempts Nadia makes on any day that she tries to log in to her bank. Copy and complete the following table to show the probability distribution of X. [4]

X	0	40	2	3
P(X=x)		0.24		

(iii) Calculate the expected number of unsuccessful attempts made by Nadia on any day that she tries to log in. [2]

(i)	0.4 S 0.6 F	M1	3 pairs S (bank, log in, success oe) and F oe seen no extra bits.
	0.6 F 0.4 S 0.6 F	A1 A1 [3]	Exactly 3 pairs, must be labelled Correct diagram with all probs correct
(ii)	x 0 1 2 3 Prob 0.4 0.144 0.216	B1 M1 A1 B1 [4]	P(0) correct Multiplying two of more factors of 0.4 and 0.6 One more correct prob One more correct prob
(iii)	$E(X) = 0.24 + 2 \times 0.144 + 3 \times 0.216$ = 1.176 (1.18)	M1 A1 [2]	Using $\Sigma p_i x_i$ Correct answer

275. 9709 w15 qp 62 Q: 3

One plastic robot is given away free inside each packet of a certain brand of biscuits. There are four colours of plastic robot (red, yellow, blue and green) and each colour is equally likely to occur. Nick buys some packets of these biscuits. Find the probability that

- (i) he gets a green robot on opening his first packet, [1]
- (ii) he gets his first green robot on opening his fifth packet. [2]

Nick's friend Amos is also collecting robots.

(iii) Find the probability that the first four packets Amos opens all contain different coloured robots.

Answer:

(i)	$\frac{1}{4}$	B1	1	
(ii)	$\left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right) = \frac{81}{1024} = 0.0791$	M1 A1	2	Expression of form $p^4(1-p)$ only, p = 1/4 or $3/4Correct answer$
(iii)	P(all diff) = $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times 4!$ = $\frac{3}{32}$ (0.0938) OR $1 \times \frac{3}{4} \times \frac{2}{4} \times \frac{1}{4} = \frac{3}{32}$	M1 M1 A1	3	4! on numerator seen mult by $k \ge 1$ or $3 \times 2 \times 1$ on num oe, must be in a fraction. 4^4 on denom or 4^3 on denom with the $3 \times 2 \times 1$ Correct answer

 $276.\ 9709_w15_qp_62\ Q\hbox{:}\ 6$

A fair spinner A has edges numbered 1, 2, 3, 3. A fair spinner B has edges numbered -3, -2, -1, 1. Each spinner is spun. The number on the edge that the spinner comes to rest on is noted. Let X be the sum of the numbers for the two spinners.

(i) Copy and complete the table showing the possible values of X. [1]

Spinner B

- (ii) Draw up a table showing the probability distribution of X.
- (iii) Find Var(X). [3]
- (iv) Find the probability that X is even, given that X is positive. [2]

[3]

Answer:

(i)												
(-)			ı		pinner	A						
				1	2	3	3			B1	1	
			-3	(-2)	-1	0	0					
	Spinne B	er	-2	-1	0	(1)	1					
			-1	0	1	2	2					
			1	2	3	4	4					
(ii)	$ _{x}$	-2	-1	0	1	2	3	4]	M1		Their values in (i) as the top line, seen
		1	2	1	3	3	1	2	-	M1		listed in (ii) or used in part (iii) Attempt at probs seen evaluated, need at
	prob	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{4}{16}$	$\frac{3}{16}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{2}{16}$		A1	3	least 4 correct from their table Correct table seen
(iii)	E(X) = 1								M1		Attempt at E(X) from their table if $\Sigma p = 1$	
(111)	$Var(X) = ((-2)^2 + 2 + 3 + 12 + 9 + 32)/16 - 1^2$							M1		Evaluating $\Sigma x^2 p$ – [their $E(X)$] ² allow $\Sigma p \neq \infty$		
		$=\frac{62}{16}$	- 1									1 but all <i>p</i> 's <1
	$= \left(\frac{23}{8}\right) (2.875)$							A1	3	Correct answer		
	OR using $\Sigma p(x-\bar{x})^2 = (9+8+4+0+3+4+18)/16$							M1	•			
	$= \frac{46}{16} = 2.875$							M1				
									\sim	A1	•	
(iv)	P(even	given	+ve)					1	C	M1		Counting their even numbers and dividing by their positive numbers
	$=\frac{5}{9}$									A1	2	Correct answer
				(5)		50					
	OR P(even given +ve) = $\frac{\left(\frac{3}{16}\right)}{\left(\frac{9}{9}\right)}$								M1		Using cond prob formula not P(E) ×	
	$\left(\frac{9}{16}\right)$									P(+ve) need fraction over fraction accept 5/16 <i>o</i> r6/16 <i>o</i> r9/16		
					"							any of $\frac{5/16 or 6/16 or 9/16}{9/16 or 10/16 or 13/16}$
			5	(0.556)						A1		Correct answer
		-	9	(0.336)								

