CHEMISTRY CLASSIFIED PAPER 3 - HAKIM ABBAS ALI (MSC)

Teacher HAKIM ABBAS ALI (M·Sc·) #66748570

29 November 2013

Chemistry Paper-3 Classified Past Paper Questions

Web: https://sites.google.com/site/hakimabbas31site/

Table of Contents

Topic 1 – Matters	3
Topic 2 – Experimental techniques	7
Topic 3: Atoms, elements and compounds	13
Topic 9 –Periodic table	27
Topic4 – Stoichiometry	36
Topic 5 – Electricity and chemistry	43
Topic 6 -Chemical Changes	50
Topic 7.1 – Chemical reactions	59
Topic 7.2-Reversible reactions	72
Topic 7.3 –Redox reactions	79
Topic 8 –Acids, bases and salts	85
Topic 10 – Metals	99
Topic 11 – Air and water	115
Topic 12 – Sulfur	124
Topic 13 –Carbonates	131
Topic 14 – Organic chemistry	131

Topic I – Matters 1. W05 Ethanoic acid is a colourless figuid at room temperature. It has the typical acid properties and forms compounds called otherwise. (a) A pure sample of ethanoic acid is stowly heated from 0°C to 150°C and its temperature is measured every minute. The results are represented on the graph below. (b) Name the change that occurs in the region **D** to **E**. (c) What would be the difference in the region **B** to **C** if an impure sample had been used? (ii) What would be the graph how the line would continue if the acid was heated to a higher temperature. (If it is seed to the graph how the line would continue if the acid was heated to a higher temperature.

(ii) Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound selenium chloride.

Use x to represent an electron from an atom of selenium.

Use o to represent an electron from an atom of chlorine.

[3]

(iii) Predict two differences in the physical properties of these two compounds.

[2]

(c) The selenide ion reacts with water.

Se²⁻ + H₃O → HSe⁻ + OH
What type of reagent is the selenide ion in this reaction? Give a reason for your choice.

[3]

[3]

[7otal: 13]

W10 he tab	le gives the compo	sition of three pa	articles.		
	particle	number of protons	number of electrons	number of neutrons	
	A	15	15	16	
	В	15	18	16	
	С	15	15	17	
(1)	Particle A is an ato				[1]
(ii)	They are all partic	les of the same	element.		
(iii)	Particle B is a neg	ative ion.			
(iv)	Particles A and C	are isotopes.			
i) (i)	What is the electro				[2]
(ii)	What is the valence	y of the elemen		***************************************	[1]
				ason for your choice	
(iii)					[1]
(III)		UNIMOTOTO O OROSTO			1.7

(III)	Explain why graphite is a soft material.	
(iv)	Give one use of graphite.	
		[1]
(b) Tw SiC	o of the oxides of these elements are carbon dioxide, CO_p , and silicon(IV) oxide.	de,
(i)	Draw a diagram showing the arrangement of the valency electrons in one molec of the covalent compound carbon dioxide. Use x to represent an electron from a carbon atom. Use o to represent an electron from an oxygen atom.	ulė
		[3]
(11)	A section of the macromolecular structure of $\mathfrak{silicon}(\mathrm{IV})$ oxide is given below.	
	Use this diagram to explain why the formula is SiO ₂ not SiO ₄ .	
(iii)	Predict two differences in the physical properties of these two oxides.	
		3375

nds.
(5
ges on the ions in.
[3]

7. V		re three types of giant structure – ionic, metallic and macromolecular.	
(a)	con	flum nitride is an ionic compound. Draw a diagram that shows the formula of appound, the charges on the ions and the arrangement of the valency elec- und the negative ion.	
		x to represent an electron from a sodium atom, o to represent an electron from a nitrogen atom.	
			[3]
(b)	(i)	Describe metallic bonding.	
	ern.		[3]
	(11)	Use the above ideas to explain why metals are good conductors of electricity,	
		metals are malleable,	[1]
			[2]
(c)		con(IV) oxide has a macromolecular structure.	
	(i)	Describe the structure of silicon(IV) oxide (a diagram is not acceptable).	227
	(ii)	Diamond has a similar structure and consequently similar properties. Give two physical properties common to both diamond and silicon(IV) oxide.	[3]

\$08 The struct	ural formula of o	carbonyl chloride	is given below.				0. M/J/07 Complete the	following table.				
		0=0	CI				type of structure	particles present	electrical conductivity of solid	electrical conductivity of liquid	example	
of this cov	alent compound		"C! ent of the valency electron	ons in one mo	ecule		ionic	positive and negative ions	poor	**********		
lse o for a	an electron from	a carbon atom. an oxygen atom					macro molecular	atoms of two different elements in a giant covalent structure	poor	poor		
					[4]		metallic	and	good	**********	copper	
W07 The table	below gives the n	number of protons,	neutrons and electrons in	atoms or ions.			-		-		[Total: 6]	
	number of	number of	number of neutrons	symbol or	- II	N	dagnesium re	acts with bromine to form	magnesium bro	ornide.		
particle		electrons		formula	4 11	(4	 Magnesius the compo 	m bromide is an ionic con ound, the charges on the i	npound. Draw a	a diagram that shor	ws the formula of electrons around	
particle	protons		-10	19								
A	9	10	10	19 F *	- II		The electr	verion. on distribution of a bromin	e atom is 2. 8.	18. 7.		
A B	9	10	12	19 F -			The electr	ve ion. on distribution of a bromin	e atom is 2, 8,	18, 7.		
A B	9 11 18	10 11 18	12 22	19 F*			the negati The electr	ve ion. on distribution of a bromin	e atom is 2. 8.	18, 7.		
A B C	9 11 18 15	10 11 18 18	12 22 16	19 F -			the negati The electr	verion. on distribution of a bromin	e atom is 2. 8.	18. 7.		
A B	9 11 18	10 11 18	12 22	19 F *			the negati The electr	verion. on distribution of a bromin	e atom is 2. 8.	18. 7.		
A B C D	9 11 18 15 13	10 11 18 18	12 22 16	19 F*	[6]		The electr	ve lon. un distribution of a bromin epresient an electron from epresient an electron from	a magnesium a	storn.	[3]	
A B C D E (a) Comp	9 11 18 15 13 blete the table. The atom in the table	10 11 18 18 18 10 e first line is given	12 22 16			Q	Usex to n Use o to n	on distribution of a browin	a magnesium a a bromine ator	stom.		
A B C D E (a) Comp	9 11 18 15 13	10 11 18 18 18 10 e first line is given	12 22 16 14 as an example.			o	Use x to n Use o to n b) In the latt	on distribution of a bromin epresent an electron from epresent an electron from ice of magnesium bromidice	a magnesium a a bromine ator	stom.		
A B C D E (a) Comp	9 11 18 15 13 Ielete the table. The atom in the table.	10 11 18 18 10 e first line is given ie is an isotope of t	12 22 16 14 as an example.	emposition 11p,	11e	ø	Use x to n Use o to n b) In the latt	on distribution of a bromin epresient an electron from epresient an electron from	a magnesium a a bromine ator	stom.		
A B C D E (a) Comp	9 11 18 15 13 Ielete the table. The atom in the table.	10 11 18 18 10 10 e first line is given.	12 22 16 14 as an example.	emposition 11p,	11e	0	Use x to n Use o to n b) In the latt	on distribution of a bromin epresent an electron from epresent an electron from ice of magnesium bromidice	a magnesium a a bromine ator	stom.		
A B C D E (a) Comp	9 11 18 15 13 Nete the table. The atom in the table 4n? Give a reaso	10 11 18 18 10 10 e first line is given.	12 22 16 14 as an example.	emposition 11p,	11e	Ø	Use x to n Use o to n Use o to n 1.2.	on distribution of a bromin epresent an electron from epresent an electron from ice of magnesium bromidice	a magnesium a bromine ator	stom.	o bromide ions is	
A B C D E (a) Comp	9 11 18 15 13 Nete the table. The atom in the table 4n? Give a reaso	10 11 18 18 10 10 e first line is given.	12 22 16 14 as an example.	emposition 11p,	11e	0	Use x to n Use o to n Use o to n 1.2.	on distribution of a bromin represent an electron from represent an electron from rice of magnesium bromid in the ferm fadice.	a magnesium a bromine ator	stom.	o bromide ions is	
A B C D E (a) Comp	9 11 18 15 13 13 atom in the table. The atom in the table at reason	10 11 18 18 10 10 e first line is given.	12 22 16 14 as an example.	emposition 11p.	[2]		Use x to n Use o to n Use o to n 12. (i) Expla	on distribution of a bromin epresent an electron from epresent an electron from ice of magnesium bromid in the term fadice.	a magnesium a bromine ator	sjom. n. magnesium ions to	to bromide ions is.	WAS
A B C D E (a) Comp thick and 1	9 11 18 15 13 Nete the table. The atom in the table 4n? Give a reaso	10 11 18 18 10 10 e first line is given.	12 22 16 14 as an example.	emposition 11p,	[2]		Use x to n Use o to n Use o to n 1.2.	on distribution of a bromin epresent an electron from epresent an electron from ice of magnesium bromid in the term fadice.	a magnesium a bromine ator	sjom. n. magnesium ions to	o bromide ions is	W/MS
A B C D E (a) Comp	9 11 18 15 13 13 atom in the table. The atom in the table at reason	10 11 18 18 10 10 e first line is given.	12 22 16 14 as an example.	emposition 11p.	[2]		Use x to n Use o to n Use o to n 12. (i) Expla	on distribution of a bromin epresent an electron from epresent an electron from ice of magnesium bromid in the term fadice.	a magnesium a bromine ator	sjom. n. magnesium ions to	to bromide ions is.	MIGHS

	arges of the three			nbols, relative mass	200 010 1010
	name	symbol	relative mass	relative charge	
	electron	6,			
	proton		1		
		n		0	
(ii)	Atoms can form	positive ions	k		
	Atoms can form	positive ions			
	Atoms of the sar	positive ions	can have different	masses.	
(iii)	Atoms can form	positive ions	can have different	masses.	
(iii)	Atoms can form Atoms of the sar Scientists are or Periodic Table fr	positive ions me element o	can have different	masses.	missing from

12. V		re three types of giant structure – ionic, metallic and macromolecular.						
- (con	odium nitride is an ionic compound. Draw a diagram that shows the formula of the impound, the charges on the ions and the arrangement of the valency electrons ound the negative ion.						
		x to represent an electron from a sodium atom. o to represent an electron from a nitrogen atom.						
			[3]					
(b)	(1)	Describe metallic bonding.						
			[3]					
	(ii)	Use the above ideas to explain why						
		metals are good conductors of electricity,						
		metals are malieable.	[1]					
		metars are massacre,	[2]					
(c)		con(IV) oxide has a macromolecular structure.						
		Describe the structure of silicon(IV) oxide (a diagram is not acceptable).						
			[3]					
	(ii)	Diamond has a similar structure and consequently similar properties. Give two physical properties common to both diamond and silicon(IV) oxide.						
		Total						

	Toj below shows the elemention states in their most		he se	cond p	eriod		Perior	dic Tat	ble ar	nd some
elem	ent	Li	Be	В	С	N	0	F	Ne	П
numt	er of outer electrons	1	2	3	4	5	6	7	8	
oxida	tion state	+1	+2	+3	+4	-3	-2	-1	0	
(II) E	xplain why some eleme									
(iii) Se (b) Berylli	elect two elements in the	ne tabl	e whic	h exis	t as di	atomic	mole	cules	of the	e type 2
(iii) Si	um hydroxide, a white ame another metal whi	solid, in	e whice	h exis	t as di	atomic	mole de.	cules	of the	e type
(iii) Si	elect two elements in the	solid, is th has obser- ous be	s an ar an an	mphote en an a sulfat	eric hy	atomic droxid droxid	de.	cules	of the	e type :
(iii) Si (b) Berylli (i) N (ii) Si ac	elect two elements in the unit of the unit	solid, in th has obser- ous be	s an ar an an	mphote mphote en an	eric hy eric hy exces	atomic droxid droxid	de. e.	cules	of the	e type :
(iii) Si	um hydroxide, a white a ame another metal white aggest what you would dded gradually to aqued	solid, in the characteristic control of the characteristic control	e whice s an ar an an we when	mphote mphote en an	eric hy	atomic droxid droxid	de. e. queou	cules	of the	e type

(ii)	Pre	dict two differences in their properties.	
			[2]
(iii)		plain why these two fluorides have different properties.	
		ĮT.	otal: 13]
2. S1			
CI	10056	an element which fits each of the following descriptions.	
	(i)	It is a yellow solid which burns to form an acidic oxide.	
	(II)	This element is a black solid which, when heated, forms a purple vapour,	[1]
	()		[1]
	(HI)	Most of its soluble salts are blue.	
		,	[1]
	(iv)	It has a basic oxide of the type MO which is used to treat acidic soils.	
			[1]
	(v)	It is an unreactive gas used to fill balloons.	
			[1]
			Total: 5]

		20	Topic 9 -Periodic table	
3. W09				of hydrides comparable to the alkanes.
	three elements in Group IV are carbon, silicon and germanium. ments and their compounds have similar properties.		(i) Draw the structural fo per molecule.	rmula of the hydride which contains four germanium
	compound, silicon carbide, has a macromolecular structure similar to that of nond.			
(i)	A major use of silicon carbide is to reinforce aluminium alloys which are used the construction of spacecraft. Suggest three of its physical properties.	in		
		131		
(ii)	Complete the following description of the structure of silicon carbide.		(ii) Predict the products of	the complete combustion of this hydride.
	Each carbon atom is bonded to four atoms.			
	Each silicon atom is bonded to carbon atoms.	[2]		[To
		- 11		
		[3]		
		[3]		
		[3]		

	ch of the follow s the description	ving select an element from Period 4 n.	i, potassium to krypton
(a) It is	a brown liquid	at room temperature.	
(b) It fo	orms a compoun	nd with hydrogen having the formula XH	4
(c) A n	netal that reacts	violently with cold water.	
(d) It h	as a complete o	uter energy level.	
(e) It h	as oxidation sta	tes of 2 and 3 only.	
(f) It c	an form an ion o	of the type X*.	
(g) Or	e of its oxides is	s the catalyst in the Contact Process.	
5. M/J/0 Use yo		eriodic table to help you answer these q	uestions.
(a) Pro	edict the formula	of each of the following compounds.	
(i)	barium oxide		
(ii)	boron oxide		
(b) Gi	ve the formula o	f the following ions.	
m	sulphide		
(i)			

Topic 9	-Periodic table Page 32
6. M/J/0	7 assium and vanadium are elements in Period IV.
(i)	State two differences in their physical properties.
	[2]
(ii)	Give two differences in their chemical properties.
7. M/J/0	7
	orine and astatine are halogens. Use your knowledge of the other halogens to dict the following:
(i)	The physical state of fluorine at r.t.p.
	The physical state of a tatine at r.t.p. [2]
(ii)	Two similarities in their chemical properties
	[2]
8. J/06	
(b) (i)	In which Period in the Periodic Table is iron to be found?
	[1]
(ii)	Use the Periodic Table to work out the number of protons and the number of neutrons in one atom of iron.
	number of protons = number of neutrons = [1]

9. N	M/J/03	
	e first three elements in Period 6 of the Periodic Table of ium and lanthanum.	the Elements are caesium
(a)	How many more protons, electrons and neutrons are ther than in one atom of caesium. Use your copy of the Period help you.	
	number of protons	
	number of electrons	
	number of neutrons	[5
10. J	1/05	
Th	ree of the halogens in Group VII are:	
	cnorne bromine iodine	
(a)	(i) How does their colour change down the Group?	
		[1
	(ii) How does their physical state (solid, liquid or gas) chan	
	(iii) Predict the colour and physical state of fluorine.	
	colour	
	physical state	
(b)) Describe how you could distinguish between aqueous pota	ssium bromide and aqueou
(b)	Describe how you could distinguish between aqueous potassium iodide.	ssium bromide and aqueous
(b)		•
(b)	potassium iodide.	

/02									
	ise is a tra ids are cata		eleme	nt. It h	as mo	re than	one v	ralency and t	he metal and its
(i)									
(ii)	Complete t	he elec	tron di	istributi	on of m	angan	ese by	inserting one	number.
	2 + 8 + .		+ 2						[1]
	anata in Day	ind an					dele	states are ab	and below
eler								states are sh	lown below.
		Mg	Al	Si	P	S	CI	Ar	
to	+1	+2	+3	+4	-3	-2	-1	0	
(i)	Why do the	e oxidat	ion sta	ites inc	rease fr	rom so	dium to	silicon?	
									[1]
The	following o	ompour	nds cor	ntain tw	o elem	ents. P	redict t	heir formulae.	
alur	minium sulp	hide							
silic	on phosphi	de							[2]
								ach descriptio	
(9									4-1
									[1]
(ii)	It reacts vi	olently	with co	ld wate	r to for	m a so	lution p	H = 14.	
									[1]
(iii)	It has a ga	seous (oxide o	f the ty	pe XO ₂	which	is acid	ic.	
									[1]
				noononi					
	(ii) /02 eler ment datio te (i) (iii) The alur silic (i) (ii) (iii)	(ii) Predict then (iii) Complete t 2 + 8 + 22 elements in Perment Na diation +1 (i) Why do the Explain wh The following or aluminium subp silicon phosphi Choose a differ (i) It has a sin (ii) It reacts vi	(ii) Predict three other (iii) Complete the elec 2 + 8 +	(ii) Predict three other proposed in the electron of 2 + 8 +	(ii) Predict three other properties of the prop	(ii) Predict three other properties of mang (iii) Complete the electron distribution of m 2 + 8 + + 2 //202 elements in Period 3 and some of their comment Na Mg A/ Si P dation +1 +2 +3 +4 -3 (i) Why do the oxidation states increase fi Explain why. The following compounds contain two elem aluminium sulphide silicon phosphide Choose a different element from Period 3 th (ii) It has a gisseous oxide of the type XO ₂ (iii) It has a gisseous oxide of the type XO ₂ (iii) It has a gisseous oxide of the type XO ₂	(ii) Predict three other properties of manganese (iii) Complete the electron distribution of mangan 2 + 8 + + 2 //202 elements in Period 3 and some of their common or ment Na Mg A/ Si P S dation 1 + 2 + 3 + 4 - 3 - 2 (i) Why do the oxidation states increase from so Explain why. The following compounds contain two elements. P aluminium sulphide silicon phosphide Choose a different element from Period 3 that mat (i) It has a similar structure to diamond. (ii) It reacts violentity with cold water to form a so (iii) It reacts violentity with cold water to form a so	(ii) Predict three other properties of manganese that are considered to the electron distribution of manganese by 2 + 8 + + 2. 2 + 8 + + 2. 2 + 8 + + 2. 2 elements in Period 3 and some of their common oxidation ment. Na Mg Al Si P S Cr dation +1 +2 +3 +4 -3 -2 -1. (i) Why do the oxidation states increase from sodium to be properties of the elements. Predict the elements of the elements. Predict the silicon phosphide silicon phosphide. The following compounds contain two elements. Predict the aluminium sulphide silicon phosphide. Choose a different element from Period 3 that matches elements in the elements. Predict the silicon phosphide. (ii) It reacts violantly with cold water to form a solution probability in the elements. Predict the silicon phosphide.	(ii) Predict three other properties of manganese that are typical of tra (iii) Complete the electron distribution of manganese by inserting one 2 + 8 + + 2. (iv) 2 (iv) 2 (iv) 4 (iv) 4

	I/J/02 mine	is one of the halogens in Group VII.	
(a)	(i)	Predict which halogen has the lightest colour.	
	(ii)	Predict which halogens are solids at room temperature.	
(b)	eva	mine is obtained from the bromide ions in sea water. Sea water is concentrated poration. Chlorine gas is bubbled through the solution. Chlorine oxidises the mide ion to bromine.	
	(i)	Complete the following equation.	
		Cl₂ +Br → +	
	(ii)	Explain using the idea of electron transfer why the bromide ion is oxidised chlorine.	
		The bromide ion is oxidised because	
		Chlorine is the oxidising agent because	
	(iii)	Name a reagent that can be oxidised by bromine molecules.	
	I/J/01 e Gro	up I metals show trends in both their physical and chemical properties.	
(i)	Ho	w does the melting point of lithium compare with that of caesium?	
(ii)	ΔΠ (Group I metals react with cold water to form the metal hydroxide	
(11)		hydrogen. What is the trend in their reactivity with water?	
(iii)	Wri	te an equation for the reaction between water and lithium.	

Topics		Page 36
	Topic4 – Stoichiometry	
		of sodium
N	$\begin{aligned} & NAHCO_3(s) \to Na_3O(s) + 2CO_2(g) + H_2O(g) & & equation 1 \\ & aHCO_3(s) \to NaOH(s) + CO_2(g) & & equation 2 \\ & NaHCO_3(s) \to Na_3CO_3(s) + CO_3(g) + H_3O(g) & & equation 3 \end{aligned}$	
Tr	the following experiment was carried out to determine which one of the prect equation.	above is the
	known mass of sodium hydrogencarbonate was heated for ten minutes lowed to cool and weighed.	s. It was then
M	esults ass of sodium hydrogencarbonate = 3.36 g ass of the residue = 2.12 g	
M	alculation , for NaHCO ₃ = 84 g; M_r for Na ₂ O = 62 g; M_r for NaOH = 40 g , for Na ₂ CO ₃ = 106 g	
(i)	Number of moles of NaHCO ₃ used =	[1]
(ii)	If residue is $\mathrm{Na_2O}$, number of moles of $\mathrm{Na_2O}$ =	
	If residue is NaOH, number of moles of NaOH =	
	If residue is Na_2CO_3 , number of moles of $Na_2CO_3 =$	[2]
(iii)	Use the number of moles calculated in (i) and (ii) to decide which on equations is correct. Explain your choice.	e of the three
		[2]
	E Chemistry Hakim Abbas A	

	the cobalt(II) carbonate was in excess.			
${\sf CoC}I_2 + 6{\sf H}_2{\sf O} \rightarrow {\sf CoC}I_2.6{\sf H}_2{\sf O}$ ${\sf Maximum\ yield}$ ${\sf Number\ of\ moles\ of\ HC}I\ used =$	$\operatorname{CoC} l_2 + 6\operatorname{H}_2\operatorname{O} \to \operatorname{CoC} l_2 6\operatorname{H}_2\operatorname{O}$ $\operatorname{Maximum yield}$ $\operatorname{Number of moles of } \operatorname{HC} l \operatorname{used} = \dots$ $\operatorname{Number of moles of } \operatorname{CoC} l_2 \operatorname{formed} = \dots$ $\operatorname{Number of moles of } \operatorname{CoC} l_2 \operatorname{6H}_2\operatorname{O} \operatorname{formed} = \dots$ $\operatorname{Mass of one mole of } \operatorname{CoC} l_2 \operatorname{6H}_2\operatorname{O} = 238 \operatorname{g}$ $\operatorname{Maximum yield } \operatorname{Of } \operatorname{CoC} l_2 \operatorname{6H}_2\operatorname{O} = \dots \operatorname{g}$ $\operatorname{To show that cobalt(II) } \operatorname{carbonate is in excess}$ $\operatorname{Number of moles } \operatorname{of } \operatorname{HC} l \operatorname{used} = \dots \operatorname{(use value from above)}$ $\operatorname{Mass of one mole } \operatorname{of } \operatorname{CoCO}_3 = 119 \operatorname{g}$ $\operatorname{Number of moles } \operatorname{of } \operatorname{CoCO}_3 \operatorname{in } 6.0 \operatorname{g of } \operatorname{cobalt(II) } \operatorname{carbonate} = \dots$ $\operatorname{Explain why cobalt(II) } \operatorname{carbonate is in excess}$	(b) 6.0 g 2.0 m	dm3. Calculate the maximum yield of cob-	
Maximum yield Number of moles of HCI used =	Maximum yield Number of moles of $CoCI_2$ formed =		CoCO_3 + 2HC l $ ightarrow$ CoC l_2 + C	O ₂ + H ₂ O
Number of moles of HC7 used =	Number of moles of $\mathrm{HC}I$ used =		$CoCl_2 + 6H_2O \rightarrow CoCl_2$	6H ₂ O
Number of moles of $CoCl_2$ formed =	Number of moles of $CoCl_2$ formed =	Maxir	um yield	
Number of moles of $CoCI_2GH_2O$ formed =	Number of moles of $CoCl_2$ 6H $_2$ O formed =	Numb	of moles of HC1 used =	
Mass of one mole of $CoCI_26H_2O = 238g$ Maximum yield of $CoCI_26H_2O =g$ To show that cobalt(II) carbonate is in excess Number of moles of HCI used =	Mass of one mole of $CoCl_2$, $6H_2O = 238g$ Maximum yield of $CoCl_2$, $6H_2O =g$ To show that cobalt(II) carbonate is in excess Number of moles of HCI used =	Numb	of moles of CoCl ₂ formed =	
Maximum yield of $CoCl_2SH_2O = \dots g$ To show that cobalt(II) carbonate is in excess Number of moles of HCl used =	Maximum yield of CoCI, 6H ₂ O =	Numb	of moles of CoC1 ₂ .6H ₂ O formed =	
To show that cobalt(II) carbonate is in excess Number of moles of HC/ used =(use value from above) Mass of one mole of CoCO ₃ = 119 g	To show that cobalt(II) carbonate is in excess Number of moles of HC/ used =	Mass	one mole of CoCl ₂ .6H ₂ O = 238 g	
Number of moles of HCI used =(use value from above) Mass of one mole of CoCO ₃ = 119 g	Number of moles of HC/I used =	Maxin	m yield of CoCl ₂ .6H ₂ O =g	1
Mass of one mole of CoCO ₃ = 119 g	Mass of one mole of CoCO ₃ = 119g Number of moles of CoCO ₃ in 6.0 g of cobalt(II) carbonate = Explain why cobalt(II) carbonate is in excess	To sh	w that cobalt(II) carbonate is in excess	
-1-0,10-0,1000 -0,11-0-0,10-0,10-0,000 -	Number of moles of CoCO ₃ in 6.0 g of cobalt(II) carbonate =	Numb	of moles of HCI used =(u	ise value from above)
Number of moles of $CoCO_3$ in 6.0 g of $cobalt(\Pi)$ carbonate =	Explain why cobalt(II) carbonate is in excess	Mass	one mole of CoCO ₃ = 119 g	
		Numb	of moles of CoCO ₃ in 6.0 g of cobalt(II) ca	rbonate =
Explain why cobalt(II) carbonate is in excess		Expla	why cobalt(II) carbonate is in excess	

3. S10 (e) The	e titanium ore contains 36.8% Iron, 31.6% titanium and the remainder is oxygen	
(1)	Determine the percentage of oxygen in this titanium compound.	
	percentage of oxygen =%	[
(ii)	Calculate the number of moles of atoms for each element. The number of moles of Fe is shown as an example, number of moles of Fe = 36.8/56 = 0.66	
	number of moles of Ti =	
	number of moles of O =	- [
(iii)	What is the simplest ratio for the moles of atoms?	
	Fe : Ti : O	
	Oloution entitlement requirement	1
(iv)	What is the formula of this titanium compound?	١
	12g of anhydrous iron/II) sulfate was heated. Calculate the mass of iron/III) o	
(c) 9.1 for	12g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) of med and the volume of sulfur trioxide, at $r.t.p.$, formed.	
(c) 9.1 for	[2g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) or	
(c) 9.1 for 2F	12g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) of med and the volume of sulfur trioxide, at $r.t.p.$, formed.	
(c) 9.1 for 2F	12g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) of med and the volume of sulfur trioxide, at r.t.p., formed. $eSO_4(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$	
(c) 9.1 for 2F	12g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) of med and the volume of sulfur trioxide, at r.t.p., formed. $eSO_d(s) \longrightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$ hass of one mole of $FeSO_4 = 152g$	
(c) 9.1 for 2Fi	12g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) of med and the volume of sulfur trioxide, at r.t.p., formed. $eSO_4(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$ hass of one mole of $FeSO_4 = 152g$ umber of moles of $FeSO_4$ used =	
(c) 9.1 for 2F m no for m	12g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) of med and the volume of sulfur trioxide, at r.t.p., formed. $eSO_d(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$ hass of one mole of $FeSO_4 = 152g$ umber of moles of $FeSO_4$ used =	
m nu nu fo	12g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) of med and the volume of sulfur trioxide, at r.t.p., formed. $eSO_4(s) \rightarrow Fe_2O_3(s) + SO_3(g) + SO_3(g)$ hass of one mole of $FeSO_4 = 152g$ umber of moles of $FeSO_4$ used =	
(c) 9.1 form	12g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) of med and the volume of sulfur trioxide, at r.t.p., formed. $eSO_4(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$ has of one mole of $FeSO_4 = 152g$ umber of moles of $FeSO_4$ used =	
(c) 9.1 form	12 g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) of mediand the volume of sulfur trioxide, at r.t.p., formed. $eSO_4(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$ ass of one mole of $FeSO_4 = 152g$ $umber of moles of FeSO_4 used = \frac{1}{2}g umber of moles of Fe_2O_3 = \frac{1}{2}g umber of moles of Fe_2O_3 = \frac{1}{2}g umber of none mole of Fe_2O_3 = \frac{1}{2}g umber of none mole of Fe_2O_3 = \frac{1}{2}g umber of none mole of Fe_2O_3 = \frac{1}{2}g umber of moles of Fe_2O_3 = \frac{1}{2}g umber of $	

ELECT L	
	S09 uantities of chemicals, expressed in moles, can be used to find the formula ompound, to establish an equation and to determine reacting masses.
(a)) A compound contains 72% magnesium and 28% nitrogen. What is its empiriformula?
(b)	A compound contains only aluminium and carbon. 0.03 moles of this compound read with excess water to form 0.12 moles of Al(OH) ₃ and 0.09 moles of CH ₄ .
	Write a balanced equation for this reaction.
(c)	0.07 moles of silicon reacts with 25g of bromine.
(c)	
(c)) 0.07 moles of silicon reacts with 25g of bromine. Si + 2Br ₂ — SiBr ₄
(c)) 0.07 moles of silicon reacts with 25g of bromine. Si + 2Br ₂ — SiBr ₄
(e)) 0.07 moles of silicon reacts with 25g of bromine. Si + 2Br ₂ —— SiBr ₄ (i) Which one is the limiting reagent? Explain your choice.
(e)) 0.07 moles of silicon reacts with 25g of bromine. Si + 2Br ₂ — SiBr ₄ (i) Which one is the limiting reagent? Explain your choice.
(c)) 0.07 moles of silicon reacts with 25g of bromine. Si + 2Br ₂ — SiBr ₄ (i) Which one is the limiting reagent? Explain your choice.

	Page 40
6. W07	
(ii) One piece of marble, 0.3 g, was added to 5 cm ³ 1.00 mol/dm ³ . Which reagent is in excess? Give	
mass of one mole of $CaCO_3$ = 100 g	
number of moles of CaCO ₃ =	
number of moles of HCl =	
reagent in excess is	
reason	[4]
(iii) Use your answer to (ii) to calculate the ma produced measured at r.t.p.	ximum volume of carbon dioxide
	[1]
 S08 Using 25.0 cm³ of aqueous sodium hydroxide, 2.24 	mol / dm ³ , 3.86 g of crystals were
obtained. Calculate the percentage yield.	
2NaOH + H₂SO₄ → Na₂SO₄	
$Na_2SO_4 + 10H_2O \longrightarrow Na_2SO_4$	0 ₄ .10H ₂ O
Number of moles of NaOH used =	
Maximum number of moles of Na ₂ SO ₄ .10H ₂ O that or	ould be formed =
Mass of one mole of Na ₂ SO ₄ .10H ₂ O = 322 g	
Maximum yield of sodium sulphate-10-water =	g
Percentage yield =	% [4]

W08			
Itis	n iron and steel rust. The formula for ru hydrated iron(III) oxide.		
(1)	Calculate the mass of one mole of Fe	₁₂ O ₃ ,2H ₂ O,	
			[1
(11)	Use your answer to (i) to calculate the	percentage of iron in rust.	
	***************************************		[2
8. V			
	nzene contains 92.3% of carbon and its	relative molecular mass is 78.	
(i)	What is the percentage of hydrogen in	benzene?	
			1
(ii)	Calculate the ratio of moles of C atom	s: moles of H atoms in benzene.	
(iii)	Calculate its empirical formula and th		
	The empirical formula of benzene is		
	The molecular formula of benzene is		(
9. V	V08		
The	complete combustion of an alkane gi	ves carbon dioxide and water.	
(i)	10 cm ⁵ of butane is mixed with 100 cr is ignited. What is the volume of unrearbon dioxide formed?		
	$C_4H_{10}(g) + 6\frac{1}{2}O_2(g)$	→ 4CO ₂ (g) + 5H ₂ O(l)	
	Volume of oxygen left =	cr	n ³
	Volume of carbon dioxide formed =	cr	n³ [

	act with all the double bonds		has been added to
cooking product	mass of saturated fat in 100 g of product/g	mass of unsaturated fat in 100 g of product/g	number of drops of bromine water
margarine	35	35	5
butter	45	28	4
corn oil	10	84	12
soya oil	15	70	10
lard	38	56	
(ii) Complete	turated fats in the diet is t	eacting with a double + Br₂ → hought to be a major	cause of heart disea
Which of	the products is the least like	ely to cause heart dise	ease?
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

an conservation	ents on electrolysis usin	g inert electrodes are g	iven in the table.	13. W08 The electrolysis of concentrated aqueous sodium chloride produces three commerciall important chemicals hydrogen, chlorine and sodium hydroxide.
electrolyte	change at negative electrode	change at positive electrode	change to electrolyte	 (a) The ions present are Na'(aq), H'(aq), Cl'(aq) and OH'(aq). (i) Complete the ionic equation for the reaction at the negative electrode (cathode).
molten lead(II) bromide	lead formed	bromine formed	used up	++ H ₂ [1]
	potassium formed	iodine formed	used up	(ii) Complete the ionic equation for the reaction at the positive electrode (anode). ———————————————————————————————————
di ta annon				(iii) Explain why the solution changes from sodium chloride to sodium hydroxide.
dilute aqueous sodium chloride				
aqueous copper(II) sulfate				14.W97 The remaining zinc oxide reacts with sulphuric acid to give aqueous zinc sulphate. This is electrolysed with inert electrodes (the electrolysis is the same as that of copper(II) sulphate with inert electrodes), ions present: Zn ^{2*} (aq) SQ ₂ *(aq) H*(aq) OH(aq)
	hydrogen formed	bromine formed	potassium hydroxide formed	(i) Zinc forms at the negative electrode (cathode). Write the equation for this reaction
			[Total: 8]	(ii) Write the equation for the reaction at the positive electrode (anode).
				(iii) The electrolyte changes from aqueous zinc sulphate to

Copper is purified by electrolysis. (a) Complete the following. The positive electrode (anode) is made from The negative electrode (cathode) is made from The electrolyte is aqueous (b) Write an ionic equation for the reaction at the positive electrode (anode). (c) (i) Give two reasons why copper is used, in electric wiring, in cooking utensils. [2] (ii) Give another use of copper.[1] [Total: 10]

16. MJ/07 Aluminum is extracted by the electrolysis of a molten mixture that contains alumina, which is aluminium oxide, $A\xi Q_3$. (a) The ore of aluminium is bauxite. This contains alumina, which is amphoteric, and iron(III) oxide, which is basic. The ore is heated with aqueous sodium hydroxide. Complete the following sentences. The _____ dissolves to give a solution of _____ The _____does not dissolve and can be removed by _____ [4] (b) Complete the labelling of the diagram. - carbon anode (+) mixture of aluminium oxide and temperature is _ [4] (c) The ions that are involved in the electrolysis are Ath and O2. (i) Write an equation for the reaction at the cathode. ... [2] (ii) Explain how carbon dioxide is formed at the anode.

	Topic 6 - Chemical Changes no electrodes have been used in cells for many years, one of the first was the Da ll in 1831.	nieł
	voltmeter	
	copper electrode	
	copper(II) sulfate(aq)	
(i)	solutions from mixing Give an explanation for the following in terms of atoms and ions. observation at zinc electrode – the electrode becomes smaller	
	explanation	[1]
	observation at copper electrode – the electrode becomes bigger explanation	
		[1]
(ii)	When a current flows, charged particles move around the circuit.	
(ii)	What type of particle moves through the electrolytes?	[1]
(ii)	What type of particle moves through the electrolytes?	[1]

opic 6 - Chemical Ci			
S09			
	he halonens to f	form bydrogen balides	
Hydrogen reacts with the			
Hydrogen reacts with the (a) Bond energy is the	e amount of er	form hydrogen halides.	d (endothermic) to
Hydrogen reacts with the	e amount of er		d (endothermic) to

bond	bond energy in kJ/mo
н–н	+436
CI-CI	+242
H-C/	+431

Use the above data to show that the following reaction is exothermic.

H-H + C/-C/ → 2H-C/

Tonic 6 - Chemical Changes

Page 132

3. W

The alcohols form a homologous series. The first four members are methanol, ethanol, propan-1-ol and butan-1-ol,

(a) One characteristic of a homologous series is that the physical properties vary in a predictable way. The table below gives the heats of combustion of the first three alcohols.

alcohol	formula	heat of combustion in kJ/mol
methanol	СН₃ОН	-730
ethanol	CH ₃ -CH ₂ -OH	-1370
propan-1-ol	CH ₃ -CH ₂ -CH ₂ -OH	-2020
butan-1-ol	CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH	

(i) The minus sign indicates that there is less chemical energy in the products than in the reactants. What form of energy is given out by the reaction?

(ii) Is the reaction exothermic or endothermic?

[1]

SE Chemistry Hakim Abbas Ali (M.Sc.)

E. Chemistry Hakim Abbas Ali (M.S.

(10)	of the first three a	eat of combustion of alcohols against the	number of carb carbon atoms pe	on atoms per mol	ecu
		1		3	
	-700	-	2		_
	-800				
	-900				
	-1000 -				
	-1100				
	-1200				
	-1200				
	-1300				
	-1400				=
	-1400				
	-1500				
	-1600				
	1000				
	-1700 -				
combustion/ kJ/mol	-1800				
					=
	-1900				
	-2000				
	-2100				
	-2200 -				
	-2300				
	-2400 -				
	-2500				
	-2600				
	2700				
	-2700				
	-2800				=

77	AJJ/0	othermic reactions produce heat energy.
(a)	Ex	xinermic reactions produce neat energy.
	An	important fuel is methane, natural gas. The equation for its combustion is as follo
		CH ₄ + 2O ₂ → CO ₂ + 2H ₂ O
	(i)	In chemical reactions bonds are broken and new bonds are formed. Using this reaction give an example of
		a bond that is broken,
		a bond that is formed.
	(ii)	Explain, using the idea of bonds forming and breaking, why this reaction exothermic, that is it produces heat energy.
(b)	So	me radioactive isotopes are used as nuclear fuels.
	(i)	Give the symbol and the nucleon number of an isotope that is used as a nucleul.
	(ii)	Give another use of radioactive isotopes.
	(ii)	
	(ii)	Give another use of radioactive isotopes.
	(ii)	

reaction between n		THE CONTRACTOR OF THE CONTRACT
bonds	energy change /kJ	exothermic or endothermic
1 mole of N ≡ N broken	+945	
3 moles of broken	+1308	
6 moles of N - H	-2328	
(ii) Explain, using the a	metals with oxygen are ex	d reaction is exothermic.
(ii) Explain, using the a		d reaction is exothermic.
(ii) Explain, using the a	metals with oxygen are expansion $O_2(g) \rightarrow 2E$ of bond forming in this reasonable.	d reaction is exothermic.

01			
	represents the formation	on of one mole of butane	from buten
+ - C - C - C - C - C - C - C - C - C -		H H H H	
1 1 1 1	H+H H-+H	H H H H	
What is the mass of on	e mole of butane mole	cules?	
complete the table that	t shows the bonds broi	ken and formed in this re	action.
bond	energy change in kJ/mol	exothermic or endothermic	
1 mole of C=C bonds broken	+610	endothermic	
1 mole of H—H bonds broken	+436		
1 mole of C—C bonds formed	-346		
2 moles of bonds formed	-826		
Sive a reason for your	choice.	eaction is exothermic or	

	CaCO ₃ (s) + 2H	Cl(aq) → CaCl₂(aq) + C	$O_2(g) + H_2O(l)$	
Similar exp	eriments were p	erformed always using 5	cm ³ of hydrochloric a	acid.
experiment	number of pieces of marble	concentration of acid in mol/dm ³	temperature/°C	time/m
1	1	1.00	25	3
2	1	0.50	25	7
3	1 piece crushed	1.00	25	1
(i) Why is	the rate in expe	1.00 g in terms of collisions t riment 2 slower than in e	xperiment 1?	
Explain eac	h of the followin	g in terms of collisions to	between reacting payeriment 1?	articles.
Explain eac (i) Why is	the rate in expe	g in terms of collisions to	periment 1?	articles.
Explain eac (i) Why is (ii) Why is	h of the followin	ig in terms of collisions to grammer 2 slower than in e	experiment 1?	articles.
Explain eac (i) Why is (ii) Why is	h of the followin	ig in terms of collisions to rriment 2 slower than in e	experiment 1?	articles.
Explain eac (i) Why is (ii) Why is	the rate in expe	ig in terms of collisions to grammer 2 slower than in e	between reacting popular periment 1?	articles.

(iii) % product at equilibrium	
0 pressure	
effect on percentage of products reaction	
reason	
	[Total: 1
FeSO, $7H_2O$ The gases formed were cooled. FeSO ₄ : $7H_2O(s) \rightarrow FeSO_4(s) + 7H_2O(g)$ green crystals yellow powder $2FeSO_4(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$ On cooling	
$SO_1 + H_2O \rightarrow H_2SO_4$ sulfuric acid $SO_2 + H_2O \rightarrow H_2SO_5$ sulfurous acid (i) How could you show that the first reaction is reversible?	
SO₂ + H₂O → H₂SO₂ sulfurous acid	
SO₂ + H₂O → H₂SO₂ sulfurous acid	
SO₂ + H₂O → H₂SO₂ sulfurous acid (i) How could you show that the first reaction is reversible? Sulfurous acid is a redustant. What would you see when acid mangenate(VII) is added to a solution containing this acid?	fied potassium
SO₂ + H₂O → H₂SO₂ sulfurous acid (i) How could you show that the first reaction is reversible? (ii) Sulfurous acid is a reductant. What would you see when acidi	fied potassium
SO₂ + H₂O → H₂SO₂ sulfurous acid (i) How could you show that the first reaction is reversible? (ii) Sulfurous acid is a reductant. What would you see when acid mangenate(VII) is added to a solution containing this acid? (iii) Suggest an explanation why sulfurous acid in contact with air	fied potassium

3. S	10
lodi	ne reacts with chlorine to form dark brown lodine monochloride.
	$I_2 + CI_2 \rightarrow 2ICI$
	s reacts with more chlorine to give yellow iodine trichloride. re is an equilibrium between these iodine chlorides.
	$ICI(I) + CI_2(g) \rightleftharpoons ICI_3(s)$
	dark brown yellow
(a)	Explain what is meant by equilibrium.
	When the equilibrium mixture is heated it becomes a darker brown colour.
(c)	
	The pressure on the equilibrium mixture is decreased. (i) How would this affect the position of equilibrium and why?
	The pressure on the equilibrium mixture is decreased. (i) How would this affect the position of equilibrium and why? It would move to the
	The pressure on the equilibrium mixture is decreased. (i) How would this affect the position of equilibrium and why? It would move to the
	The pressure on the equilibrium mixture is decreased. (i) How would this affect the position of equilibrium and why? It would move to the
	The pressure on the equilibrium mixture is decreased. (i) How would this affect the position of equilibrium and why? It would move to the
	The pressure on the equilibrium mixture is decreased. (i) How would this affect the position of equilibrium and why? It would move to the
	The pressure on the equilibrium mixture is decreased. (i) How would this affect the position of equilibrium and why? It would move to the
	The pressure on the equilibrium mixture is decreased. (i) How would this affect the position of equilibrium and why? It would move to the

4. S09		
	on monoxide can be removed from coal gas by mixing it with steam a ixture over a catalyst of iron(III) oxide at 400°C.	nd pa
	CO + H ₂ O ← CO ₂ + H ₂	
(i) V	Vrite a word equation for this reaction.	
(ii) V	What does the symbol ➡ mean?	
5. S08 Carbon	nyl chloride, $COCI_b$, is a colourless gas. It is made by the following reaction	ın.
C	cool	
100	O(g) + Cl ₂ (g) $\stackrel{\text{def}}{=}$ COCl ₂ (g) heat	
(a) W		equil
(a) W	heat Then the pressure on the equilibrium mixture is decreased, the position of	equili
(a) W	heat then the pressure on the equilibrium mixture is decreased, the position of oves to left. How does the concentration of each of the three chemicals change?	
(a) W me	heat then the pressure on the equilibrium mixture is decreased, the position of oves to left.	
(a) W me	heat then the pressure on the equilibrium mixture is decreased, the position of oves to left. How does the concentration of each of the three chemicals change? Explain why the position of equilibrium moves to left.	
(a) W me	heat then the pressure on the equilibrium mixture is decreased, the position of oves to left. How does the concentration of each of the three chemicals change? Explain why the position of equilibrium moves to left.	
(a) W mo	heat then the pressure on the equilibrium mixture is decreased, the position of oves to left. How does the concentration of each of the three chemicals change? Explain why the position of equilibrium moves to left.	othern
(a) W mo	heat then the pressure on the equilibrium mixture is decreased, the position of oves to left. How does the concentration of each of the three chemicals change? Explain why the position of equilibrium moves to left. Sing the information given with the equation, is the forward reaction exploited in the concentration of each of the three chemicals change?	othern
(a) W mo	heat then the pressure on the equilibrium mixture is decreased, the position of oves to left. How does the concentration of each of the three chemicals change? Explain why the position of equilibrium moves to left. Sing the information given with the equation, is the forward reaction exploited in the concentration of t	othern

(c) (i)	Sketch a graph which shows how the percent mixture varies with pressure.	tage of ammonia in the equilibriu
	1	
	% ammonia at equilibrium	
	0	
	pressure	
		1
(ii)	Explain why the graph has the shape shown.	
		[Total: 1
	Chemistry	

N/05 Reversi eaction	ble reactions can come to equilibrium. They have both a forward and a backward.
	en water is added to an acidic solution of bismuth(III) chloride, a white precipitate ns and the mixture slowly goes cloudy.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(i)	Explain why the rate of the forward reaction decreases with time.
(ii)	Why does the rate of the backward reaction increase with time?
	[1]
(iii)	After some time why does the appearance of the mixture remain unchanged?
(iv)	When a few drops of concentrated hydrochloric acid are added to the cloudy mixture, it changes to a colourless solution. Suggest an explanation.
	[2

	Topic 7.3 –Redox reactions	
	n has two oxidation states +2 and +3. There are two possible equation between iron and bromine.	ons for the redo
	Fe + $Br_y \rightarrow Fe^{y_x} + 2Br^-$	
	2Fe + 3Br ₂ → 2Fe ³⁺ + 6Br ⁻	
(i)	Indicate, on the first equation, the change which is oxidation. Give a choice, $% \left(1\right) =\left(1\right) \left(1\right) \left($	a reason for you
(11)	Which substance in the first equation is the reductant (reducing age	ent)?
0 000		
S11Hydriod	ic acid, HI(aq), is a strong acid. Its salts are iodides.	
(a) It ha	as the reactions of a typical strong acid. Complete the following equal	tions.
(i)	+ +	[1]
(ii)	zinc + hydriodic - + - + - + - + - + + + + +	
	carbonate acid	[1]
(iii)	MgO + +	[1]
	o of the reactions in (a) are acid/base and one is redox. Which one is r choice,	redox? Explain

(c) Des	scribe how you could distinguish between hydriodic, HI(aq), and hydrot ds, by bubbling chlorine through these two acids.	
resi	ult with hydriodic acid	
resi	ult with hydrobromic acid	[2]

3. W09		
	one is an oxidant. It can oxidise an iodide to iodine.	
	$2\Gamma + O_3 + 2H^* \rightarrow I_2 + O_2 + H_2O$	
(i)	What would you see when ozone is bubbled through aqueous acidified potassiu iodide?	m
		0
(ii)	Explain in terms of electron transfer why the change from iodide ions to iodine molecules is oxidation.	
(iii)	Explain, using your answer to b(ii) , why ozone is the oxidant in this reaction.	
		1
4. W07		
		ı
The	reaction between magnesium and bromine is redox. Complete the sentences.	t
The	reaction between magnesium and bromine is redox. Complete the sentences.	t
The Mag	reaction between magnesium and bromine is redox. Complete the sentences. nesium is theagent because it hatagent because it hat	[
The Mag	reaction between magnesium and bromine is redox. Complete the sentences.	[
Mag 	reaction between magnesium and bromine is redox. Complete the sentences. agent because it has electrons.	[
Mag 	reaction between magnesium and bromine is redox. Complete the sentences. agent because it has electrons.	[s
Mag 	reaction between magnesium and bromine is redox. Complete the sentences. agent because it has electrons.	[s

gas	test for gas
ammonia	
	bleaches damp litmus paper
hydrogen	
	relights a glowing splint
	tums limewater milky

[Total: 5]

ICCSF Chemiato

Jakim Abbas Ali MiSci

LUTIC		
11. W07 Methy	r famine, CH ₉ NH ₂ , is a weak base. Its properties are similar to those of ammonia	
(a) W	Then methylamine is dissolved in water, the following equilibrium is set up.	
	CH ₃ NH ₂ + H ₂ O	
	base acid	
(1)) Suggest why the arrows are not the same length.	1
(H)	Explain why water is stated to behave as an acid and methylamine as a bar	
	***************************************	[
ar	n aqueous solution of the strong base, sodium hydroxide, is pH 12. Predict th n aqueous solution of methylamine which has the same concentration. Give a	
10	ryour choice of pH.	
	r your choice of pH.	(
		[
(c) M		[
(c) M	lethylamine is a weak base like ammonia.	[
(c) M	tethylamine is a weak base like ammonia.) Methylamine can neutralise acids. 2CH ₂ NH ₂ + H ₂ SO ₄ → (CH ₃ NH ₃) ₂ SO ₄	
(c) M	lethylamine is a weak base like ammonia.) Methylamine can neutralise acids. 2CH ₃ NH ₂ + H ₂ SO ₄ → (CH ₃ NH ₃) ₂ SO ₄ methylammonium sulphate Write the equation for the reaction between methylamine and hydrochloric a Name the salt formed.	cid.
(c) M	Idethylamine is a weak base like ammonia.) Methylamine can neutralise acids. 2CH ₃ NH ₂ * H ₂ SO ₄ → (CH ₃ NH ₃) ₂ SO ₄ methylammonium sulphate Write the equation for the reaction between methylamine and hydrochloric a	cid.
(c) M	Idethylamine is a weak base like ammonia. Methylamine can neutralise acids. 2CH ₃ NH ₂ + H ₂ SO ₄ → (CH ₃ NH ₃) ₂ SO ₄ methylammonium sulphate Write the equation for the reaction between methylamine and hydrochloric a Name the salt formed.	cid.
(e) M (i)	lethylamine is a weak base like ammonia.) Methylamine can neutralise acids. 2CH ₃ NH ₂ + H ₂ SO ₄ → (CH ₃ NH ₃) ₂ SO ₄ methylamine in sulphate Write the equation for the reaction between methylamine and hydrochloric a Name the salt formed. When aqueous methylamine is added to aqueous iron(II) sulphate, a green precipitate is formed. What would you see if iron(III) chloride solution had bused instead of iron(II) sulphate?	cid.

			Page 94
2. M/J/07	,		
There a	re three methods	of preparing salts.	
Method	A – use a burette	and an indicator.	
Method	B - mix two solu	tions and obtain the salt by precipitation.	
Method	C – add an exce filtration.	ess of base or a metal to a dilute acid a	nd remove the excess by
		salt preparations, choose one of the met d and then write or complete the equation	
(i)	the soluble salt,	zinc sulphate, from the insoluble base, zi	nc oxide
	method		
	reagent		
	word equation		[3]
(ii)	the soluble salt,	potassium chloride, from the soluble base	e, potassium hydroxide
	method		
	reagent		
	equation	+	→ KC1+ H ₂ O [3]
(iii)	the insoluble sal	t, lead(II) iodide, from the soluble salt, lea	ad(II) nitrate
	method		
	reagent	***************************************	
	equation Pb2++		[4]
			[Total: 10]

13. M	1/J/06	
Thi	s question is concerned with the follow	ing oxides.
	aluminium oxide Al ₂ O ₃	
	calcium oxide CaO	
	carbon dioxide CO ₂	
	carbon monoxide CO	
	magnesium oxide MgO	
	sulphur dioxide SO ₂	
(ii)		with aqueous sodium hydroxide but not wi
(ii)		with aqueous sodium hydroxide but not wi
(iii)		both with hydrochloric acid and with aqueo
	,	
(iv)	Which of the above oxides will reaqueous sodium hydroxide?	act neither with hydrochloric acid nor w

14. J	1/05		
(b)	То	show that the polymer contains silver the following test wa	as carried out.
	silv	e polymer fibres were chopped into small pieces and wi er atoms were oxidised to silver(1) ions. The mixture wa oride was added to the filtrate and a white precipitate form	s filtered. Aqueous sodii
	(i)	Why was the mixture filtered?	
	(ii)	Explain why the change of silver atoms to silver ions is o	
	(iii)	Give the name of the white precipitate,	
15. N	1/05		
(b)		he above method, a soluble salt was prepared by neu sluble base. Other salts have to be made by different meth	
	(i)	Give a brief description of how the soluble salt, rubidium from the soluble base, rubidium hydroxide.	n sulphate could be mad
(ii)	Sug	ggest a method of making the insoluble salt, calcium fluo	oride.

			[3

B. J/05		
of these	isbad caverns in New Mexico are very large underground caves. Althoug caves are coated with gypsum (hydrated calcium sulphate), the caves in limestone.	
(a) It is	believed that the caves were formed by sulphuric acid reacting with the lin	mestone.
(i)	Complete the word equation.	
	calcium + sulphuric calcium + + + + carbonate acid sulphate	[1]
(ii)	Describe how you could test the water entering the cave to show that it sulphate ions.	contained
	test	
	result	
(iii)	How could you show that the water entering the cave has a high conce hydrogen ions?	entration of
		[1]
oxio	rogen sulphide gas which was escaping from nearby petroleum deposits ised to sulphuric acid. Complete the equation for this reaction forming sulphuric acid.	was being
	H₂S +O₂ →	[2]
(ii)	Explain why all the hydrogen sulphide should be removed from the before it is used as a fuel.	petroleum
		[1]

15. W11 Some hydroxides, nitrates and carbonates decompose when heated. (a) (i) Name a metal hydroxide which does not decompose when heated. (ii) Write the equation for the thermal decomposition of copper(II) hydroxide. (iii) Suggest why these two hydroxides behave differently. (b) (i) Metal nitrates, except those of the Group 1 metals, form three products when he Name the products formed when zinc nitrate is heated. (ii) Write the equation for the thermal decomposition of potassium nitrate. 16. \$11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this suffur dioxide which is used to make suffuric acid. (a) (i) Zinc blende is heated in air, Zinc oxide and sulfur dioxide are formed. Write balanced equation for this reaction. (iii) Zinc oxide is reduced to zinc by heating with carbon. Name two other reach which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. Zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C		
Some hydroxides, nitrates and carbonates decompose when heated. (a) (i) Name a metal hydroxide which does not decompose when heated. (ii) Write the equation for the thermal decomposition of copper(II) hydroxide. (iii) Suggest why these two hydroxides behave differently. (b) (i) Metal nitrates, except those of the Group 1 metals, form three products when he Name the products formed when zinc nitrate is heated. (iii) Write the equation for the thermal decomposition of potassium nitrate. 16. \$11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this suffur dioxide which is used to make suffuric acid. (a) (i) Zinc blende is heated in air, Zinc oxide and sulfur dioxide are formed. Writ balanced equation for this reaction. (ii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C		Topic 10 - Metals
(a) (i) Name a metal hydroxide which does not decompose when heated. (ii) Write the equation for the thermal decomposition of copper(II) hydroxide. (iii) Suggest why these two hydroxides behave differently. (b) (i) Metal nitrates, except those of the Group 1 metals, form three products when he Name the products formed when zinc nitrate is heated. (ii) Write the equation for the thermal decomposition of potassium nitrate. 16, S11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this sulfur dioxide which is used to make sulfuric acid. (a) (i) Zinc blende is heated in air. Zinc oxide and sulfur dioxide are formed. Writ balanced equation for this reaction. (ii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C		
(ii) Write the equation for the thermal decomposition of copper(II) hydroxide. (iii) Suggest why these two hydroxides behave differently. (b) (i) Metal nitrates, except those of the Group 1 metals, form three products when he Name the products formed when zinc nitrate is heated. (ii) Write the equation for the thermal decomposition of potassium nitrate. 16, S11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this sulfur dioxide which is used to make sulfuric acid. (a) (i) Zinc blende is heated in air. Zinc oxide and sulfur dioxide are formed. Writ balanced equation for this reaction. (iii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C	Some h	ydroxides, nitrates and carbonates decompose when heated.
(iii) Write the equation for the thermal decomposition of copper(II) hydroxide. (iii) Suggest why these two hydroxides behave differently. (b) (i) Metal nitrates, except those of the Group 1 metals, form three products when here Name the products formed when zinc nitrate is heated. (iii) Write the equation for the thermal decomposition of potassium nitrate. 16. \$11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this suffur dioxide which is used to make suffuric acid. (a) (i) Zinc blende is heated in air. Zinc oxide and sulfur dioxide are formed. Write balanced equation for this reaction. (iii) Zinc oxide is reduced to zinc by heating with carbon. Name two other reaction could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C	(a) (i)	Name a metal hydroxide which does not decompose when heated.
(iii) Suggest why these two hydroxides behave differently. (b) (i) Metal nitrates, except those of the Group 1 metals, form three products when he Name the products formed when zinc nitrate is heated. (ii) Write the equation for the thermal decomposition of potassium nitrate. 16. \$11 A major ore of zinc is zinc blende, ZnS, A by-product of the extraction of zinc from this suffur dioxide which is used to make sulfuric acid. (a) (i) Zinc blende is heated in air. Zinc oxide and sulfur dioxide are formed. Writ balanced equation for this reaction. (iii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C		
(iii) Suggest why these two hydroxides behave differently. (b) (i) Metal nitrates, except those of the Group 1 metals, form three products when here. Name the products formed when zinc nitrate is heated. (ii) Write the equation for the thermal decomposition of potassium nitrate. 16. \$11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this suffur dioxide which is used to make suffuric acid. (a) (i) Zinc blende is heated in air. Zinc oxide and sulfur dioxide are formed. Write balanced equation for this reaction. (iii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C	(0)	Write the equation for the thermal decomposition of copper(II) hydroxide.
(iii) Suggest why these two hydroxides behave differently. (b) (i) Metal nitrates, except those of the Group 1 metals, form three products when he Name the products formed when zinc nitrate is heated. (ii) Write the equation for the thermal decomposition of potassium nitrate. 16. \$11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this sulfur dioxide which is used to make sulfuric acid. (a) (i) Zinc blende is heated in air, Zinc oxide and sulfur dioxide are formed. Writ balanced equation for this reaction. (iii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C		
(b) (i) Metal nitrates, except those of the Group 1 metals, form three products when he Name the products formed when zinc nitrate is heated. (ii) Write the equation for the thermal decomposition of potassium nitrate. 16. \$11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this sulfur dioxide which is used to make sulfuric acid. (a) (i) Zinc blende is heated in air, Zinc oxide and sulfur dioxide are formed. Writ balanced equation for this reaction. (iii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C		
(b) (i) Metal nitrates, except those of the Group 1 metals, form three products when he Name the products formed when zinc nitrate is heated. (ii) Write the equation for the thermal decomposition of potassium nitrate. 16. S11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this or suffur dioxide which is used to make suffuric acid. (a) (i) Zinc blende is heated in air. Zinc oxide and sulfur dioxide are formed. Write balanced equation for this reaction. (ii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C	(111)	Suggest why these two hydroxides behave differently.
Name the products formed when zinc nitrate is heated. (ii) Write the equation for the thermal decomposition of potassium nitrate. 16. \$11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this suffur dioxide which is used to make sulfuric acid. (a) (i) Zinc blende is heated in air, Zinc oxide and sulfur dioxide are formed. Writ balanced equation for this reaction. (ii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C		
(ii) Write the equation for the thermal decomposition of potassium nitrate. 16. \$11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this suffur dioxide which is used to make sulfuric acid. (a) (i) Zinc blende is heated in air, Zinc oxide and sulfur dioxide are formed. Writ balanced equation for this reaction. (iii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure, it is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = \$08 °C, cadmium bp = 765 °C, lead bp = 1751 °C	(b) (i)	Name the products formed when zinc nitrate is heated.
16. \$11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this suffur dioxide which is used to make suffuric acid. (a) (i) Zinc blende is heated in air. Zinc oxide and sulfur dioxide are formed. Writ balanced equation for this reaction. (ii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C		
16. \$11 A major ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this sulfur dioxide which is used to make sulfuric acid. (a) (i) Zinc blende is heated in air. Zinc oxide and sulfur dioxide are formed. Writ balanced equation for this reaction. (ii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc by = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C	(ii)	
A major ore of zinc is zinc blende, ZhS. A by-product of the extraction of zinc from this of sulfur dioxide which used to make sulfuric acid. (a) (i) Zinc blende is heated in air, Zinc oxide and sulfur dioxide are formed. Write balanced equation for this reaction. (ii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure, it is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C		
balanced equation for this reaction. (ii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C	A major	
(iii) Zinc oxide is reduced to zinc by heating with carbon. Name two other real which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C	(a) (i)	
which could reduce zinc oxide. (iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C		
(iii) The zinc obtained is impure. It is a mixture of metals. Explain how fractional distill could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C	(ii)	
could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C		
	(iii)	could separate this mixture.

given.	or or eve dimenimal elettier	nts, which are marked *, their com	mion values on sidilos d
	* barium	Ba	
	* lanthanum	La (+3)	
	magnesium		
	zinc		
	* chromium	Cr (+2), (+3), (+6)	
	iron		
	copper		
	* palladium	(+2)	
(i)	Which two metals would	ist to answer the following question or react with dilute hydrochloric stals (*) would react with cold water	acid?
(i) (ii)	Which two metals would	not react with dilute hydrochloric	acid?
(i) (ii)	Which two unfamiliar me	not react with dilute hydrochloric	acid?
(i) (ii)	Which two unfamiliar me What is the oxidation sta	not react with dilute hydrochloric	acid? er?
(i) (ii) (iii)	Which two unfamiliar me What is the oxidation sta	not react with dilute hydrochloric stals (*) would react with cold wate te of barium?	acid?
(i) (ii) (iii)	Which two metals would Which two unfamiliar me What is the oxidation sta	not react with dilute hydrochloric stals (*) would react with cold wate te of barium?	acid? er? ced by carbon.
(i) (ii) (iii)	Which two metals would Which two unfamiliar me What is the oxidation sta	not react with dilute hydrochloric stals (*) would react with cold wate te of barium? al (*) whose oxide cannot be redu to predict that metals such as	acid? ar? ced by carbon.
(i) (ii) (iii)	Which two metals would Which two unfamiliar me What is the oxidation sta What is the oxidation sta Why should you be able more than one oxidation	not react with dilute hydrochloric stals (*) would react with cold wate te of barium? al (*) whose oxide cannot be redu to predict that metals such as	acid? ar? ced by carbon. iron and chromium ha
(i) (ii) (iii)	Which two metals would Which two unfamiliar me What is the oxidation sta Name an unfamiliar met Why should you be able more than one oxidation	not react with dilute hydrochloric stals (*) would react with cold wate te of barium? al (*) whose oxide cannot be redu to predict that metals such as state?	acid? ar? ced by carbon. iron and chromium har
(i) (ii) (iii)	Which two metals would Which two unfamiliar me What is the oxidation sta Name an unfamiliar met Why should you be able more than one oxidation	not react with dilute hydrochloric stals (*) would react with cold wate the of barium?	acid? ar? ced by carbon. iron and chromium har

23. W07 Zinc is	extracted from zinc blende, ZnS.	
dic	to blende is heated in air to give zinc oxide and sulphur dioxide. Most of the s ixide is used to make sulphur trioxide. This is used to manufacture sulphuri me of the acid is used in the plant, but most of it is used to make fertilisers.	
(i)	Give another use of sulphur dioxide.	
(11)	Describe how sulphur dioxide is converted into sulphur trioxide.	
(iii)	Name a fertiliser made from sulphuric acid.	

	me of the zinc oxide was mixed with an excess of carbon and heated to 10 c distills out of the furnace. $2ZnO + C \ \stackrel{\rm de}{\sim} \ 2Zn + CO_2 \\ C + CO_2 \rightarrow 2CO$	00
(i)	Name the two changes of state involved in the process of distillation.	
(ii)	Why is it necessary to use an excess of carbon?	

			Page 168
24. \		an alloy made from impure iron,	
(a)		h iron and steel rust. The formula for rust is Fe ₂ O ₃₋₂ H ₂ O. hydrated iron(III) oxide.	
	(i)	Name the two substances that must be present for rusting to occur.	
			121
	1123		
	(11)	Painting and coating with grease are two methods of preventing iron or steel rusting. Give two other methods.	worn
			1-1
(b)	(i)	Name a reagent that can reduce iron(III) oxide to iron.	
			[1]
	(iii)	Write a symbol equation for the reduction of iron(III) oxide, Fe ₂ O ₃ , to iron.	
			[2]
			le1
(c)	(i)	Calculate the mass of one mole of Fe ₂ O _{3.2H₂O.}	
			[1]
	(ii)	Use your answer to (i) to calculate the percentage of iron in rust.	
			[2]
(d)		from the blast furnace is impure. Two of the impurities are carbon and sil see are removed by blowing oxygen through the molten iron and adding cal te.	
	(i)	Explain how the addition of oxygen removes caroon.	
			[1]
	(ii)	Explain how the addition of oxygen and calcium oxide removes silicon.	
			[2]
			tel.

LUNIO		
is e	e remaining zinc oxide reacts with sulphuric acid to give as lectrolysed with inert electrodes (the electrolysis is the sar per(II) sulphate with inert electrodes), is present: Zn²²(aq) SO ₄ ²²(aq) H¹(aq) OH(aq)	
(i)	Zinc forms at the negative electrode (cathode). Write the	
(ii)	Write the equation for the reaction at the positive electron	de (anode).
(iii)	The electrolyte changes from aqueous zinc sulphate to	
(d) Gi	ve two uses of zinc.	
		[Tot

25. M/J/	107 anium is produced by the reduction of its chloride. This is heated with magnesium	en In
	inert atmosphere of argon.	in in
	TiCi ₄ + 2Mg → Ti + 2MgCi ₅	
	PER ARMS THAT IS A SECURIT THE SECURITY OF THE	
(i)	Explain why it is necessary to use argon rather than air.	
		[1]
£133	Name another metal that would reduce tranium chloride to tranium.	
(11)	Name another metal that would reduce trianium chloride to trianium.	
		[1]
(66)	Suggest how you could separate the metal, titanium, from the soluble salt magn	nesiun
44	chloride.	
		[2]
(b) Ti	anium is very resistant to corrosion. One of its uses is as an electrode in the cath	odic
	steel oil rig	
	steel oil rig which is cathode sea water contains H*(aq), OH*(aq), Na' (aq), Cf'(aq)	
a	tanium which is cathode sea water contains H'(eq), OH'(eq).	
a	tanium which is cathode sea water contains H (aq), GH (aq), Na (aq), GP (aq)	
a (i)	tanium which is cathode sea water contains H¹(aq), CH (aq), Na (aq), CP (aq) Define oxidation in terms of electron transfer.	
a (i)	tanium which is cathode sea water contains H (aq), GH (aq), Na (aq), GP (aq)	
a (i)	tanium which is cathode sea water contains H¹(aq), CH (aq), Na (aq), CP (aq) Define oxidation in terms of electron transfer.	. [1]
(i) (ii)	tanium which is cathode sea water contains H (aq), GH (aq). Nar (aq), GP (aq) Define oxidation in terms of electron transfer. The steel oil rig is the cathode. Name the gas formed at this electrode.	. [1]
(i) (ii)	tanium which is cathode sea water contains H (ran), CH (ran). Define oxidation in terms of electron transfer. The steel oil rig is the cathode. Name the gas formed at this electrode. Name the two gases formed at the titanium anode.	[1]
(i) (ii)	tanium which is cathode sea water contains H (aq), GH (aq). Nar (aq), GP (aq) Define oxidation in terms of electron transfer. The steel oil rig is the cathode. Name the gas formed at this electrode.	[1]
(i) (ii)	tanium which is cathode sea water contains H (ran), CH (ran). Define oxidation in terms of electron transfer. The steel oil rig is the cathode. Name the gas formed at this electrode. Name the two gases formed at the titanium anode.	[1]
(i) (ii)	tanium which is cathode sea water contains H*(aq), O+(aq), Na*(aq), CF(aq) The steel oil rig is the cathode, Name the gas formed at this electrode, Name the two gases formed at the titanium anode, and Explain why the oil rig does not rust.	[1]
(i) (ii)	tanium which is cathode sea water contains H (aq), GH (aq). Na (aq), GP (aq) Define oxidation in terms of electron transfer. The steel oil rig is the cathode. Name the gas formed at this electrode. Name the two gases formed at the fitanium anode.	[1]
(i) (ii)	tanium which is cathode sea water contains H*(aq), O+(aq), Na*(aq), CF(aq) The steel oil rig is the cathode, Name the gas formed at this electrode, Name the two gases formed at the titanium anode, and Explain why the oil rig does not rust.	[1]
(i) (ii)	tanium which is cathode sea water contains sea water contains H*(aq), OH*(aq), Na*(aq), CF (aq) Define oxidation in terms of electron transfer. The steel oil rig is the cathode, Name the gas formed at this electrode, Name the two gases formed at the titanium anode, and Explain why the oil rig does not rust.	[1]

(v) Another way of protecting steel from corrosion is sacrificial protection. Give two differences between sacrificial protection and cathodic protection.	ction.
26, J/06	
Iron is a transition element.	
(a) Which of the following statements about transition elements are correct	?
Tick three boxes.	
The metals are highly coloured e.g. yellow, green, blue.	
The metals have low melting points.	
Their compounds are highly coloured.	
Their compounds are colourless.	
The elements and their compounds are often used as catalysts.	
They have more than one oxidation state.	
IGCSF, Chemistry Hakim Abbay A	

27. J	/06					
(c)		n is extracted in a b formed in the extrac		The list below g	ives some of the su	bstances u
	ca	rbon monoxide	coke	iron ore	limestone	slag
	(i)	Which substance	is a mineral o	containing largely	calcium carbonate?	
	Taxo*V					
	(ii)	Which substance	is formed wh	en impurities in th	e ore react with calc	ium oxide?
	(111)	Which substance				
(d)	Stat	e two functions of th	e coke used i	n the blast furnace.		
						[2]
(e)	Mos	st of the iron is conve			teel. Give one use for	
(e)		-0.000 (C.)	rted into mild		teel. Give one use for	
(e)	mild	i steel	rted into mild	steel or stainless s	teel. Give one use for	each.
(e)	mild	i steel	rted into mild	steel or stainless s	teel. Give one use for	each.
(e)	mild	i steel	rted into mild	steel or stainless s	teel. Give one use for	each.
(e)	mild	i steel	rted into mild	steel or stainless s	teel. Give one use for	each.
(e)	mild	i steel	rted into mild	steel or stainless s	teel. Give one use for	each.
(e)	mild	i steel	rted into mild	steel or stainless s	teel. Give one use for	each.
(e)	mild	i steel	rted into mild	steel or stainless s	teel. Give one use for	each.
(e)	mild	i steel	rted into mild	steel or stainless s	teel. Give one use for	each.
(e)	mild	i steel	rted into mild	steel or stainless s	teel. Give one use for	each.
(e)	mild	i steel	rted into mild	steel or stainless s	teel. Give one use for	each.

(c) The	equation for the reaction of X with cold water is given below.	
	$2X(s) + 2H_2O(1) \longrightarrow 2XOH(aq) + H_2(g)$	
(i)	Describe the test you would use to show that the gas evolved is hydrogen.	
		[1
(ii)	How could you show that the water contained a compound of the type XOH?	
		[2
(iii)	In which group of the Periodic Table does metal X belong?	
		[1
(iv)	The ore of \boldsymbol{X} is its chloride. Suggest how metal \boldsymbol{X} could be extracted from chloride.	its
		[2
		Į.

	Topic 11 – Air and water
1. W11	of the oxides are responsible for acid rain.
	tify the two oxides and explain their presence in the atmosphere.

2. W11	
Two im	portant greenhouse gases are methane and carbon dioxide.
	thane is twenty times more effective as a greenhouse gas than carbon dioxid thane in the atmosphere comes from both natural and industrial sources.
(i)	Describe two natural sources of methane.
(ii)	Although methane can persist in the atmosphere for up to 15 years, it is everemoved by oxidation. What are the products of this oxidation?
	w do the processes of respiration, combustion and photosynthesis determi- centage of carbon dioxide in the atmosphere?
7	
2	
****	[F
	Į,

4. W10 Ammon	ila is an important industrial ch	emicat.				
(a) (i)	Give the electron structure of					
(8)	Use this electronic structure, formula of ammonia is NH ₃ no	rather the	an the val	ency of ni	trogen, to ex	xplain wh
		v-sterittiser			mononosisteno	
(h) Am	monia is made by the Haber P					
100						
N ₂ (g) + 3H ₂ (g) ← 2NH ₃ (g) for	vard read	tion is exi	othermic		
The	e percentage of ammonia in the	e equilibr	ium mixtu	re varies	with conditio	ns.
	pressure/atmospheres	100	200	300	400	
	% ammonia at 300 °C	45	65	72	78	
	% ammonia at 500°C	9	18	25	31	
	conditions actually used are : The original catalyst was plat				y it was chan	
(I) (II)	Explain why the highest pres	sure give	es the hig	hest pero	entage of ar	nmonia
100	equilibrium mixture.					
100	equilibrium mixture.					
(ii)	equilibrium mixture. What happens to the unreact	ed nitrog	en and hy	rdrogen?		
(ii)	equilibrium mixture. What happens to the unreact	ed nitrog	en and hy	rdrogen?		

(iv)	State one advantage and one disadvantage of using a lower temperature.				
	advantage				
		[1			
	disadvantage				
		[1			
		[Total: 9			
dange	is a form of oxygen. Ozone is present in the upper atmospherous solar radiation from reaching the Earth's surface. Sone of e into the upper atmosphere decompose ozone. Chemicals that ane $(\mathrm{CH_3},\mathrm{CI})$ and an oxide of nitrogen $(\mathrm{NO_3})$.	the chemicals that have this effect are			
(1)	Which of these three chemicals diffuses the most slowly? Give choice.	a reason for your			
(11)		ie compounds in the			
(11)	Chioromethane is formed when seaweed decomposes. Name tr	e compounds in the			
(11)	Chloromethane is formed when seaweed decomposes. Name to environment from which seaweed might have obtained the following the control of the	e compounds in the wing elements:			
(11)	Chioromethane is formed when seaweed decomposes. Name to environment from which seaweed might have obtained the folio carbon;	e compounds in the			
(II)	Chloromethane is formed when seaweed decomposes. Name to environment from which seaweed might have obtained the folio carbon; hydrogen; chlorine	e compounds in the			
	Chloromethane is formed when seaweed decomposes. Name to environment from which seaweed might have obtained the folio carbon; hydrogen; chlorine	[2] per compounds in the compounds in the wing elements:			

(iv) T	he oxides of nitrogen are atmospheric pollutants. Describe how they are former	ed.
(v) C	complete the equation for the decomposition of ozone.	
	O ₅ →	[2]
	[Total	111
6. N/05		
In 1909	 Haber discovered that nitrogen and hydrogen would react to form ammonia, ammonia was 8%. 	. The
	$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$ the forward reaction is exothermic	
	catalyst platinum temperature 600 °C pressure 200 atm	
(a) De	scribe how hydrogen is obtained for the modern process.	
55530		10
m. m	What's for any large for any l	
(p) (i)	What is the catalyst in the modern process?	500
(ii)	Explain why the modern process, which uses a lower temperature, has a h	
	yield of 15%.	
		101
	Chemistry Hakim Abbas Ali (Al-S	

(ii) Name two compounds in unpolluted air. (b) Two common pollutants in air are carbon monoxide and the oxides of nitrogen. (i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(a) The major gases in unpolluted air are 79% nitrogen and 20% oxygen. (i) Name another gaseous element in unpolluted air. (ii) Name two compounds in unpolluted air. (b) Two common pollutants in air are carbon monoxide and the oxides of nitrogen. (i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed?	14000		
(ii) Name another gaseous element in unpolluted air. (iii) Name two compounds in unpolluted air. (ib) Two common pollutants in air are carbon monoxide and the oxides of nitrogen. (i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(ii) Name another gaseous element in unpolluted air. (iii) Name two compounds in unpolluted air. (ib) Two common pollutants in air are carbon monoxide and the oxides of nitrogen. (i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.			
(ii) Name two compounds in unpolluted air. (b) Two common pollutants in air are carbon monoxide and the oxides of nitrogen. (i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(ii) Name two compounds in unpolluted air. (b) Two common pollutants in air are carbon monoxide and the oxides of nitrogen. (i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(a) The	major gases in unpolluted air are 79 % nitrogen and 20 % oxygen.	
(ii) Name two compounds in unpolluted air. (b) Two common pollutants in air are carbon monoxide and the oxides of nitrogen. (i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(ii) Name two compounds in unpolluted air. (b) Two common pollutants in air are carbon monoxide and the oxides of nitrogen. (i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(i)	Name another gaseous element in unpolluted air,	
(ii) Name two compounds in unpolluted air. (b) Two common pollutants in air are carbon monoxide and the oxides of nitrogen. (i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(ii) Name two compounds in unpolluted air. (b) Two common pollutants in air are carbon monoxide and the oxides of nitrogen. (i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.			[1
(i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(ii)		
(i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(i) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.			12
(ii) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(ii) Name another pollutant in air. (ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.			
(ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(b) Two	common pollutants in air are carbon monoxide and the oxides of nitrogen.	
(ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(i)	Name another pollutant in air.	
(ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(ii) Describe how carbon monoxide is formed. (iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	.,		[1
(iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.			
(iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(ii)	Describe how carbon monoxide is formed.	
(iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(iii) How are the oxides of nitrogen formed? Explain how a catalytic converter reduces the emission of these two gases.			
(iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.			
(iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.	(iii) How are the oxides of nitrogen formed? (iv) Explain how a catalytic converter reduces the emission of these two gases.			12
(iv) Explain how a catalytic converter reduces the emission of these two gases.	(iv) Explain how a catalytic converter reduces the emission of these two gases.	/883		
(iv) Explain how a catalytic converter reduces the emission of these two gases.	(iv) Explain how a catalytic converter reduces the emission of these two gases.	(,,,,	now are the oxoto or introgen rounds?	
(iv) Explain how a catalytic converter reduces the emission of these two gases.	(iv) Explain how a catalytic converter reduces the emission of these two gases.			
(iv) Explain how a catalytic converter reduces the emission of these two gases.	(iv) Explain how a catalytic converter reduces the emission of these two gases.			
(iv) Explain how a catalytic converter reduces the emission of these two gases.	(iv) Explain how a catalytic converter reduces the emission of these two gases.			[2
		(iv)		
				,,,,,,,
[Total: 1	[Total: 1			[2
			[Total	10

	N/06 nimisi	ing air pollution is essential for health and for the environment.
(a)	Nat	tural gas is methane.
	(i)	Write the equation for complete combustion of methane.
	(ii)	Explain why it is dangerous to use a gas fire in a poorly ventilated room.
(b)	but	v sulphur fuels are being introduced. Ordinary diesel contains 500 ppm of sulp low sulphur diesel contains less than 50 ppm. Why is this an advantage to irronment?
(c)	oxid cart	talytic converters reduce pollution from motor vehicles, as shown in the follow gram. des of nitrogen less harmful gase pon monoxide less harmful gase.
(c)	oxid cart	des of nitrogen less harmful gase to atmosphere catalysts rhodium,
(c)	oxid cart unb	des of nitrogen be so finitrogen catalysts rhodium, platnum, palladium
(c)	oxid cart unb	alytic converters reduce pollution from motor vehicles, as shown in the follow gram. des of nitrogen
(c)	oxid cart unb	des of nitrogen be so finitrogen catalysts rhodium, platnum, palladium
(c)	oxid cart unb	des of nitrogen Jess of nitrogen Jess of nitrogen Jess harmful gase to atmosphere Less harmful gase to atmosphere Catalysts rhodium, platinum, palladium What type of elements are the metals rhodium, platinum and palladium?
(c)	oxid cart unb	abytic converters reduce pollution from motor vehicles, as shown in the follow gram. des of nitrogen less harmful gase to atmosphere unt hydrocarbons What type of elements are the metals rhodium, platinum and palladium? Rhodium catalyses the decomposition of the oxides of nitrogen.
(c)	oxid cart unb	alytic converters reduce pollution from motor vehicles, as shown in the follow gram. Iess of nitrogen less harmful gase to elmosphere until hydrocarbons catalysts rhodium, platinum, palladium What type of elements are the metals rhodium, platinum and palladium? Rhodium catalyses the decomposition of the oxides of nitrogen. 2NO — N ₂ + O ₂ Two other pollutants are carbon monoxide and unburnt hydrocarbons. How

	11 – Air and water Page 122	2
9. N/0	ia is manufactured by the Haber Process.	
	$N_2(g) + 3H_2(g) \stackrel{\text{\tiny min}}{=} 2NH_2(g)$ 200 atmospheres 450°C	
The fo	ward reaction is exothermic.	
(a) (i	What is the catalyst for this reaction?	
	[1]]
(ii	Newer catalysts have been discovered for this process. Using these catalysts, the operating temperature is lowered from 450°C to 400°C. What is the advantage of using a lower temperature? Explain your answer.	
	advantage	
	explanation	
	[2]]
th	ter passing over the catalyst, the mixture contains 15% of ammonia. It is cooled and a ammonia liquefies and is separated from the unreacted nitrogen and hydrogen, sey are recycled.	
(How are the gases recycled?	
]
(i	Only ammonia gas liquefies. Suggest an explanation for this.	
	[1]]
	ea, $CO(NH_2)_2$, is one of the fertilisers manufactured from ammonia. mnonia is heated with carbon dioxide.	
(Write an equation for the manufacture of urea.	
	[2]]
(i	Explain why urea on its own might not be very effective in promoting crop growth.	
]
	Chemistry Hakim Abbas Ali (M.Sc.)	

		is in air are nitrogen and oxygen. Name two other gases present
		Į.
1		silutants present in air are sulphur d'oxide and lead compounds. Sta armful effect of each.
	source	
	harmful effect	
le	ead compounds	
	source	
	harmful effect	
0	of oxygen and of	photosynthesis are two of the processes that determine the percentar carbon dioxide in the air. er process that changes the percentages of these two gases in air.
		1
(i	i) The equation	n for photosynthesis is given below.
		6CO ₂ + 6H ₂ O
,	This is an on	ydothermic reaction.
	THIS IS ALL OIL	
		e reaction for respiration.
		e reaction for respiration
C _t	Complete the	e reaction for respiration

			Top	ic 12 – S	Sulfur			
1. S11								
(b) Sun	tur aloxiae	is used to	make suit	ur trioxide i	n the Con	tact Proces	55.	
			2SO ₂ (g) +	O₂(g) ←	2SO ₃ (g)			
The	forward r	eaction is e	xothermic	. The cond	itions use	d are:		
tem	perature:	450°C						
	ssure:	2 atmosph	neres					
	alyst:	vanadium						
	olain, ment st econom		position	of equilibriu	m and ra	te, why the	se condition	ns give the
			•	ntact Proce				
	2802	g) + O ₂ (g) 🚃 2S		rard react	ion is exoth	nermic	
(a) Su	2802	g) + O ₂ (g) 🚃 2S	O ₃ (g) forv	rard react		nermic	
(a) Su	2SO ₂ (g) + O ₂ (g) === 2S on conditi	O ₃ (g) forv	vard react	Process?		
(a) Su	2SO ₂ (g) + O ₂ (g) === 2S on conditi	O ₃ (g) forv	vard react			
(a) Su	2SO ₂ (What are	g) + O ₂ (e) the reaction	g) == 2S on conditi	O ₃ (g) forv	Contact F	Process?		
(i)	2SO ₂ (What are	g) + O ₂ (e) the reaction	g) == 2S on conditi	O ₃ (g) forvious for the	Contact F	Process?	ay the sam	ne when th
(a) Sul	What are	g) + O ₂ (the reactions of the property of th	g) == 2S on conditi sulphur tri pased? Ex	O ₃ (g) forvions for the	Contact F	Process?	ay the sam	ne when th
(a) Sul	2SO ₂ (g) + O ₂ (be the reaction of	g) == 2S on conditi sulphur tripased? Ex	O ₃ (g) forvious for the	Contact F	Process?	ay the sam	ne when th
(a) Sul	2SO ₂ (What are	g) + O ₂ (e) the reaction of t	g) == 2S ion conditi sulphur tri sased? Ex	O ₃ (g) forvons for the	Contact F	Process?	ay the sam	ne when th
(a) Sul	2SO ₂ (What are	g) + O ₂ (e) the reaction of t	g) == 2S ion conditi sulphur tri sased? Ex	O ₃ (g) forvons for the	Contact F	Process?	ay the sam	ne when th
(a) Sul	Would the tempera	g) + O ₂ (the reaction of the reaction of the yield of ture is increased to the property of the yield of ture is increased to the yield of tu	g) == 2S on conditi sulphur tri passed? Ex	O ₃ (g) forvons for the coxide increplain your	rard react Contact f	Process?	ay the sam	e when the

Lunici	
3. W09	
(a) Sul	furic acid is made by the Contact process.
	$2SO_2 + O_2 \rightleftharpoons 2SO_3$
Thi	s is carried out in the presence of a catalyst at 450 °C and 2 atmospheres pressure.
(i)	How is the sulfur dioxide made?
	T I
(ii)	Give another use of sulfur dioxide.
(iii)	Name the catalyst used.
(iv)	If the temperature is decreased to 300 °C, the yield of sulfur trioxide increases. Explain why this lower temperature is not used.
(v)	Sulfur trioxide is dissolved in concentrated sulfuric acid. This is added to water to make more sulfuric acid. Why is sulfur trioxide not added directly to water?

	M/J/06 Iphuri	6 ic acid is made by the Contact process in the following sequence of reactions.
		$sulphur \rightarrow sulphur \ dioxide \rightarrow sulphur \ trioxide \rightarrow sulphuric \ acid$
(a)	(i)	How is sulphur dioxide made from sulphur?
		[1
	(ii)	Sulphur dioxide has other uses.
		Why is it used in the manufacture of paper?
	(111)	How does it preserve food?
		[1
		equation for a stage of the Contact process is
(D)	The	
(D)		$2SO_2 + O_2 \rightleftharpoons 2SO_3$ percentage of sulphur trioxide in the equilibrium mixture varies with temperature.
(D)		$2SO_2 + O_2 \rightleftharpoons \ 2SO_3$ a percentage of sulphur trioxide in the equilibrium mixture varies with temperature. $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$
(0)		2SO₂ + O₂ ⇒ 2SO₃ percentage of sulphur trioxide in the equilibrium mixture varies with temperature. percentage of
(0)	The	$2SO_2 + O_2 \rightleftharpoons \ 2SO_3$ e percentage of sulphur trioxide in the equilibrium mixture varies with temperature. $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$
(0)	The	2SO ₂ + O ₂ = 2SO ₃ e percentage of sulphur trioxide in the equilibrium mixture varies with temperature. percentage of sulphur trioxide temperature How does the percentage of sulphur trioxide in the equilibrium mixture vary as the
(6)	The	Percentage of sulphur trioxide in the equilibrium mixture varies with temperature. percentage of sulphur trioxide temperature How does the percentage of sulphur trioxide in the equilibrium mixture vary as the temperature increases? Circle the correct answer.
(0)	The	2SO₂ + O₂ ⇒ 2SO₃ percentage of sulphur trioxide in the equilibrium mixture varies with temperature. percentage of sulphur trioxide temperature How does the percentage of sulphur trioxide in the equilibrium mixture vary as the temperature increases? Circle the correct answer. Increase stays the same decreases [1]

(iii	Explain, mentioning both rate and percentage yield, why the temperature u the Contact process is 450°C.	sed
		1
(iv) Describe how the sulphur trioxide is changed into concentrated sulphuric acid	l.
		10000
	ric acid is manufactured by the Contact Process. Sulphur dioxide is oxidis t trioxide by oxygen.	ed t
	2SO ₂ + O ₂	
(i) Na	me the catalyst used in this reaction.	
	hat temperature is used for this reaction?	. [
(11) VVI		
2/2/		. [
	escribe how sulphur trioxide is changed into sulphuric acid.	[
]

				Page 128
M/J/	04 is used to make sulphuri 5 million tonnes.	acid. In the UK, the an	nual production of the aci	d is
) The	reactions in the manufaction.	ure of sulphuric acid by th	e Contact Process are sho	OWN
	Sulphur		Sulphur dioxide	
	S	reaction 1	SO ₂	
5	ulphur diaxide + oxygen		Sulphur trioxide	
	2SO ₂ + O ₂	reaction 2	2SO ₃	
	Sulphur trioxide		Oleum	
	SO ₃	reaction 3	H ₀ S ₂ O ₇	
	Oleum + water		Sulphuric acid	
	H ₂ S ₂ O ₇	reaction 4	H ₂ SO ₄	
(i)	Give a large scale source			
(11)	State another use of sulph			[1]
				[1]
(iii)	How is sulphur changed in	to sulphur dioxide?		
				[1]
(iv)	Name the catalyst used in			(4)
(v)	Reaction 2 is exothermic, to increase the rate of this	Why is a catalyst, rather th reversible reaction?		sed
(vi)	Write a word equation for	reaction 3.		
(vii)	Write a symbol equation for			[1]
				[1]

	1/03 lphur	dioxide, SO_2 , and sulphur trioxide, SO_3 , are the two oxides of sulphur.
(a)		phur dioxide can kill bacteria and has bleaching properties. Give a use of kide that depends on each of these properties.
	(i)	ability to kill bacteria
	(ii)	bleaching properties
(b)	Sul	phur trioxide can be made from sulphur dioxide.
	(i)	Why is this reaction important industrially?
	(ii)	Complete the word equation.
		sulphur dioxide + \rightarrow sulphur trioxid
	(iii)	What are the conditions for this reaction?
(c)	Sul	phur dioxide is easily oxidised in the presence of water.
		$SO_2 + 2H_2O - 2e^- \rightarrow SO_4^{2-} + 4H^+$
	(i)	What colour change would be observed when an excess of aqueous dioxide is added to an acidic solution of potassium manganate(VII)?
	(ii)	To aqueous sulphur dioxide, acidfied barium chloride solution is added. The remains clear. When bromine is added, a thick white precipitate forms. Who white precipitate? Explain why it forms.

(i)	Why is sulphur dioxide needed in paper making?
(ii)	How does sulphur dioxide preserve food?
(b) Sul	phuric acid is a typical strong acid.
(i)	Explain the term strong acid.
(ii)	Write a word equation for the reaction between zinc carbonate and sulphuric acid
(iii)	Write an equation for the reaction between sodium hydroxide and sulphuric acid.
(iv)	Write an ionic equation for the reaction between magnesium and sulphuric acid.

1. M/J/0	Topic 13 - Carbonates 6 n carbonate is an important raw material.	
(a) Na	me a rock which is made up of calcium carbonate,	[1
(b) W	nen calcium carbonate is heated strongly, it decomposes. $CaCO_3 \rightarrow CaO + CO_2$	·
(i)	Calculate the relative formula mass of:	
	CaCO ₃	
	CaO	[2
(ii)	7.00 kg of calcium oxide was formed. What mass of calcium carbonate heated?	wa
		[
(c) Ca	cium carbonate is used to control soil acidity.	
(i)	Why is it important to control soil acidity?	
		[
(ii)	Both calcium carbonate, insoluble in water, and calcium oxide, slightly soluble used to increase soil pH. Suggest two advantages of using calcium carbonate.	
(ii)	Both calcium carbonate, insoluble in water, and calcium oxide, slightly soluble,	
	Both calcium carbonate, insoluble in water, and calcium oxide, slightly soluble used to increase soil pH. Suggest two advantages of using calcium carbonate.	[
	Both calcium carbonate, insoluble in water, and calcium oxide, slightly soluble used to increase soil pH. Suggest two advantages of using calcium carbonate.	[
	Both calcium carbonate, insoluble in water, and calcium oxide, slightly soluble used to increase soil pH. Suggest two advantages of using calcium carbonate. Give one use of calcium carbonate other than for making calcium oxide	[i
	Both calcium carbonate, insoluble in water, and calcium oxide, slightly soluble used to increase soil pH. Suggest two advantages of using calcium carbonate. Give one use of calcium carbonate other than for making calcium oxide controlling soil pH.	[

Structu	ral formulae are an essential part of Organic Chemistry.
(a) Dra	w the structural formula of each of the following. Show all the bonds in the structure.
(i)	ethanoic acid
	11
an	ethanol
(11)	emanor
	[1]
(b) (i)	Ethanoic acid and ethanol react to form an ester.
(0) (1)	What is the name of this ester?
	[1]
(ii)	The same linkage is found in polyesters. Draw the structure of the polyester which can be formed from the monomers shown below.
	$HOOC-C_6H_4-COOH$ and $HO-CH_2-CH_2-OH$
	[3]
(iii)	Describe the pollution problems caused by non-biodegradable polymers.
	[2]

(ii)	Explain, in general terms, what is meant by fermentation.
	stanol can be oxidised to a carboxylic acid by heating with acidified potassiul anganate(VII). Give the name and structural formula of the carboxylic acid.
na	ime
st	ructural formula
	ı
	Itanol reacts with ethanoic acid to form a liquid, X, which has the sweet smell oneass, its empirical formula is C _j H _j O and its M _j is 116.
ba	itanol reacts with ethanoic acid to form a liquid, X, which has the sweet smell o
ba	itanol reacts with ethanoic acid to form a liquid, X , which has the sweet smell on nanas. Its empirical formula is C_yH_yO and its M_y is 116.
ba (i)	itanol reacts with ethanoic acid to form a liquid, X, which has the sweet smell on nanas. Its empirical formula is C _j H ₀ O and its M _i is 116. What type of compound is liquid X?
ba (i)	ntanol reacts with ethanoic acid to form a liquid, X, which has the sweet smell on nanas. Its empirical formula is C _j H _q O and its M _i is 116. What type of compound is liquid X?
(i)	flanol reacts with ethanoic acid to form a liquid, X, which has the sweet smell o nanas. Its empirical formula is C ₃ H ₆ O and its M ₇ is 116. What type of compound is liquid X? Give the molecular formula of liquid X.
(i)	ntanol reacts with ethanoic acid to form a liquid, X, which has the sweet smell of nanas. Its empirical formula is C ₂ H ₂ O and Its M ₁ is 116. What type of compound is liquid X? [1] Give the molecular formula of liquid X.
(i)	ntanol reacts with ethanoic acid to form a liquid, X, which has the sweet smell of nanas. Its empirical formula is C ₂ H ₂ O and Its M ₁ is 116. What type of compound is liquid X? [1] Give the molecular formula of liquid X.
(i)	ntanol reacts with ethanoic acid to form a liquid, X, which has the sweet smell of nanas. Its empirical formula is C ₂ H ₂ O and Its M ₁ is 116. What type of compound is liquid X? [1] Give the molecular formula of liquid X.
(i)	itanol reacts with ethanoic acid to form a liquid, X, which has the sweet smell on nanas. Its empirical formula is C ₃ H ₄ O and Its M ₁ is 116. What type of compound is liquid X? [1] Give the molecular formula of liquid X. [1] Draw the structural formula of X. Show all the individual bonds.
(i)	ntanol reacts with ethanoic acid to form a liquid, X, which has the sweet smell of nanas. Its empirical formula is C ₂ H ₂ O and Its M ₁ is 116. What type of compound is liquid X? [1] Give the molecular formula of liquid X.

3. \$ The	st1 re are two types of polymerisation - addition and condensation.	
	Explain the difference between them.	
27-5		
(b)	Poly(dichloroethene) is used to package food. Draw its structure.	The structural formu
	of dichloroethene is shown below.	
	HCI	
	H C/	
		1
(c)	The polymer known as PVA is used in paints and adhesives. It	ts structural formula
	shown below.	
	—сн,—сн—сн,—сн— ооссн, ооссн,	
	OOCCH ₃ OOCCH ₃	
	Deduce the structural formula of its monomer.	
		1
	SE Chemistry Hakin	

Topic 14 - Organic chemistry

(d) A condensation polymer can be made from the following monomers.

HOOC(CH₂)₂COOH and H₂N(CH₂)₂NH₂

Draw the structural formula of this polymer.

[3]

[Total: 8]

4. S10		
Methai	noic acid is the first member of the homologous series of carboxylic acids.	
(a) Gi	ve two general characteristics of a homologous series.	
(b) In	some areas when water is boiled, the inside of kettles become coated with a	
ca	Icium carbonate. This can be removed by adding methanoic acid.	ldy
(i)	Complete the equation.	
	HCOOH + $CaCO_3 \rightarrow Ca(HCOO)_2$ + +	
ans.		
(ii)	Methanoic acid reacts with most metals above hydrogen in the reactivity ser Complete the word equation.	ies
zinc +	methanoic acid → +	
2		
(iii)	Aluminium is also above hydrogen in the reactivity series.	
	Why does methanoic acid not react with an aluminium kettle?	
(c) Gi	ve the name, molecular formula and empirical formula of the fourth acid in this	se
na	me	
me	olecular formula	
	npirical formula	
-		
	[To	ota

		Page 138
5. W10		
	ers polymerise to form polymers or macromolecules.	
(a) (l)	Explain the term polymerise.	
	[1]	E
(ii)	There are two types of polymerisation - addition and condensation. What is the difference between them?	
		Ĺ
(b) An	important monomer is chloroethene which has the structural formula shown below.	
aris.	H W	
It is	made by the following method.	
	$C_2H_4 + CI_2 \rightarrow C_2H_4CI_2$ dichloroethane	
Thi	s is heated to make chloroethene. C,H,Cl, → C,H,Cl + HCl	
(1)		
(1)	Ethene is made by cracking alkanes. Complete the equation for cracking dodecane.	
	C ₁₂ H ₂₆ → + 2C ₂ H ₄	r.
	Another method of making dichloroethane is from ethane.	
	C,H _c + 2Cl ₂ → C,H,Cl ₂ + 2HCl	
(ii)	Suggest a reason why the method using ethene is preferred.	
	[1	
(111)	Describe an industrial method of making chlorine.	

(iv) D	raw the structural formula of poly(chloroethene).
In	clude three monomer units.
	[Total:
6. M/J/0	7
	source of energy is the combustion of fossil fuels.
(a) (i)	Name a solid fossil fuel.
m	None of the state
(11)	Name a gaseous fossil fuel.
(h) Pet	troleum is separated into more useful fractions by fractional distillation.
	Name two liquid fuels obtained from petroleum.
	and
(ii)	Name two other useful products obtained from petroleum that are not used fuels.
	and
(iii)	Give another mixture of liquids that is separated on an industrial scale by fractio distillation.

Topic			Page 140
	sis is used in chemistry to break down cor	mplex molecules into simpler one or —COO—are esters.	s.
(4) 00	\	JI — 000 — 010 00010.	
(i)	Give the names and formulae of the two propanoate is hydrolysed	compounds formed when the e	ester ethyl
	CH — CH —		
	CH,—CH,—C	сн,—сн,	
	name	name	
	formula	formula	
			[4]
(ii)	Fats are naturally occurring esters. They sodium hydroxide	can be hydrolysed by boiling with	aqueous
	C ₁₇ H ₃₆ COOCH ₂	сн ₂ он	
	C ₁₇ H ₃₆ COOCH + 3NaOH → 3C		
	C ₁₁ H ₃₀ COOĊH ₂ fat	ĊH₂OH	
	What type of compound has the formula	C ₁₉ H ₃₆ COONa and what is its ma	in use?
	type of compound		[1]
	use		[1]
(iii)	Name a synthetic polyester.		
			[1]
IGESI			li (M.Sc.)

1,307,003		
(b) T	he structure of a typical protein is drawn below.	
	-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-	
(i)	Control Contro	
(ii)		
(III)	Individual amino acids can be identified by chromatography. The R_{γ} value amino acid glycine is 0.5. Describe how you could show that glycine was pres	of t
(III)	Individual amino acids can be identified by chromatography. The R, value	of t
(111)	Individual amino acids can be identified by chromatography. The R _i value amino acid glycine is 0.5. Describe how you could show that glycine was pres a chromatogram.	of the
(III)	Individual amino acids can be identified by chromatography. The R _i value amino acid glycine is 0.5. Describe how you could show that glycine was pres a chromatogram.	of the
(III)	Individual amino acids can be identified by chromatography. The R _i value amino acid glycine is 0.5. Describe how you could show that glycine was pres a chromatogram.	of the
(111)	Individual amino acids can be identified by chromatography. The R _i value amino acid glycine is 0.5. Describe how you could show that glycine was pres a chromatogram.	of the

 (iii) Name the reagent that reacts with but-1-ene to form butan-1-ol. (b) (i) Balance the equation for the complete combustion of butan-1-ol. C₂H₀OH +O₂ →CO₂ +H₂O (ii) Write a word equation for the preparation of the ester butyl methanoate. 			
Butan-1-ol can be manufactured from but-1-ene, which is made from petroleum. Biobutanol is a fuel of the future. It can be made by the fermentation of almost any form of biomass - grain, straw, leaves etc. (a) But-1-ene can be obtained from alkanes such as decane, C₁₀H₂₂, by cracking. (i) Give the reaction conditions. (ii) Complete an equation for the cracking of decane, C₁₀H₂₂, to give but-1-ene. C₁₀H₂₂ →	. W09		
tiomass - grain, straw, leaves etc. (a) But-1-ene can be obtained from alkanes such as decane, C ₁₀ H ₂₂ , by cracking. (i) Give the reaction conditions. (ii) Complete an equation for the cracking of decane, C ₁₀ H ₂₂ , to give but-1-ene. C ₁₀ H ₂₂ →			
 (ii) Give the reaction conditions. (iii) Complete an equation for the cracking of decane, C₁₂H₂₂ to give but-1-ene. C₁₂H₂₂ →			of
(ii) Complete an equation for the cracking of decane, C₁₂H₂₂, to give but-1-ene. C₁₂H₂₂ → [(iii) Name the reagent that reacts with but-1-ene to form butan-1-ol. [(b) (i) Balance the equation for the complete combustion of butan-1-ol. [C₂H₂OH + [O₂ → [CO₂ + [H₂O [(ii) Write a word equation for the preparation of the ester butyl methanoate.	(a) Bu	t-1-ene can be obtained from alkanes such as decane, C ₁₀ H ₂₂ , by cracking,	
 (ii) Complete an equation for the cracking of decane, C₁₀H₂₂, to give but-1-ene. C₁₀H₂₂ →	(i)	Give the reaction conditions.	
 (ii) Complete an equation for the cracking of decane, C₁₀H₂₂, to give but-1-ene. C₁₀H₂₂ →			
(iii) Name the reagent that reacts with but-1-ene to form butan-1-ol. (b) (i) Balance the equation for the complete combustion of butan-1-ol. ———————————————————————————————————			. [
 (iii) Name the reagent that reacts with but-1-ene to form butan-1-ol. (b) (i) Balance the equation for the complete combustion of butan-1-ol. 	(ii)	Complete an equation for the cracking of decane, $C_{10}H_{22}$, to give but-1-ene.	
(b) (i) Balance the equation for the complete combustion of butan-1-ol. C _a H _b OH +O ₂ →CO ₂ +H ₂ O [(ii) Write a word equation for the preparation of the ester butyl methanoate.		C ₁₀ H ₂₂ →	. [
(b) (i) Balance the equation for the complete combustion of butan-1-oi. C₄H₂OH +O₂ →CO₂ +H₂O [ii) Write a word equation for the preparation of the ester butyl methanoate.	(iii)	Name the reagent that reacts with but-1-ene to form butan-1-ol,	
C ₄ H ₂ OH + O ₂ → CO ₂ + H ₂ O [(ii) Write a word equation for the preparation of the ester butyl methanoate.			. [
(ii) Write a word equation for the preparation of the ester butyl methanoate.	(b) (i)	Balance the equation for the complete combustion of butan-1-ol.	
		$C_4H_0OH +$ $O_2 \rightarrow$ $CO_2 +$ H_2O	ľ
	(ii)	Write a word equation for the preparation of the ester butyl methanoate.	
			. [
		Chemistre Hakim Abisa Ali/M S.	

(c)	The fermentation of biomass by bacteria produces a mixture of products which biobutanol, propanol, hydrogen and propanoic acid.
	(i) Draw the structural formula of propanol and of propanoic acid. Show all the
	propanol
	propanoic acid
	(ii) Why is it important to develop these fuels, such as biobutanol, as alternative petroleum?
(d)	How could you show that butanol made from petroleum and biobutanol are trichemical?

9. \$09		
Lactic a	icid can be made from corn starch.	
	сн _з —сн—соон он	
	lactic acid	
It polym	nerises to form the polymer, polylactic acid (PLA) which is biodegradable.	
(a) Su	ggest two advantages that PLA has compared with a polymer made from petroleu	m
		[2
(b) The	e structure of PLA is given below.	
	CH3 CH3	
(i)	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ What type of compound contains the group that is circled?	
(i)	What type of compound contains the group that is circled?	[1
	What type of compound contains the group that is circled?	[1
	What type of compound contains the group that is circled?	[1
	What type of compound contains the group that is circled? Complete the following sentence. Lactic acid molecules can form this group because they contain both an	
(ii)	What type of compound contains the group that is circled? Complete the following sentence. Lactic acid molecules can form this group because they contain both an	[1
(ii)	What type of compound contains the group that is circled? Complete the following sentence. Lactic acid molecules can form this group because they contain both an group and an group. Is the formation of PLA, an addition or condensation polymerisation? Give	2
(ii)	What type of compound contains the group that is circled? Complete the following sentence. Lactic acid molecules can form this group because they contain both an group and an group. Is the formation of PLA, an addition or condensation polymerisation? Give	2
(ii)	What type of compound contains the group that is circled? Complete the following sentence. Lactic acid molecules can form this group because they contain both an group and an group. Is the formation of PLA, an addition or condensation polymerisation? Give	2
(ii)	What type of compound contains the group that is circled? Complete the following sentence. Lactic acid molecules can form this group because they contain both an group and an group. Is the formation of PLA, an addition or condensation polymerisation? Give reason for your choice.	2
(ii)	What type of compound contains the group that is circled? Complete the following sentence. Lactic acid molecules can form this group because they contain both an group and an group. Is the formation of PLA, an addition or condensation polymerisation? Give reason for your choice.	2

Inpic 1			
(c) Wh	en lactic acid is heated, acrylic a	cid is formed.	
	H H H H H H H H H H H H H H H H H H H	H C=C H COOH	
(i)		the action of heat on lactic acid.	
	lactic acid →	++	[*
(ii)		nguish between lactic acid and acryli	
	result for acrylic acid		[3
(iii)	Describe a test, other than chemicals contain an acid group	using an indicator, which would sp.	how that both
	test		
	result		
			[2
			[Total: 13

ness are generally unreactive. Their reactions include combustion, substitut complete combustion of an alkane gives carbon dioxide and water. $10\mathrm{cm}^3\mathrm{of}\mathrm{butane}\mathrm{is}\mathrm{mixed}\mathrm{with}100\mathrm{cm}^3\mathrm{of}\mathrm{oxygen},\mathrm{which}\mathrm{is}\mathrm{an}\mathrm{excess}.\mathrm{The}\mathrm{is}\mathrm{ignited}.\mathrm{What}\mathrm{is}\mathrm{the}\mathrm{volume}\mathrm{of}\mathrm{unreacted}\mathrm{oxygen}\mathrm{left}\mathrm{and}\mathrm{what}\mathrm{is}\mathrm{the}\mathrm{vo}\mathrm{carbon}\mathrm{dioxide}\mathrm{formed?}$ $\mathrm{C}_4\mathrm{H}_{10}(g) + \mathrm{6}_2^4\mathrm{O}_2(g) \longrightarrow\mathrm{4CO}_2(g) + \mathrm{5H}_2\mathrm{O}(l)$
complete combustion of an alkane gives carbon dioxide and water. 10 cm³ of butane is mixed with 100 cm³ of oxygen, which is an excess. The is ignited. What is the volume of unreacted oxygen left and what is the vo carbon dioxide formed?
10 cm³ of butane is mixed with 100 cm³ of oxygen, which is an excess. The is ignited. What is the volume of unreacted oxygen left and what is the vocarbon dioxide formed?
is ignited. What is the volume of unreacted oxygen left and what is the vo carbon dioxide formed?
$C_4H_{10}(g) + 6\frac{1}{2}O_2(g) \longrightarrow 4CO_2(g) + 5H_2O(l)$
Volume of oxygen left = cm ³
Volume of carbon dioxide formed = cm ³
Why is the incomplete combustion of any alkane dangerous, particular enclosed space?
equation for a substitution reaction of butane is given below. CH ₃ -CH ₂ -CH ₂ -CH ₃ + Cl ₂ - CH ₃ -CH ₂ -CH ₂ -CH ₂ -Cl + HCI
Name the organic product.
This reaction does not need increased temperature or pressure. What is the essential reaction condition?
Write a different equation for a substitution reaction between butane and ch

Topic 14 – Organic chemistry Page 147
(c) Alkenes are more reactive and industrially more useful than alkanes. They are made by cracking alkanes.
$C_7H_{16} \longrightarrow CH_3-CH=CH_2 + CH_3-CH_2-CH=CH_2 + H_2$ heptane propene but-1-ene
(i) Draw the structural formula of the polymer poly(propene).
(ii) Give the structural formula and name of the alcohol formed when but-1-ene reacts
with steam.
name [1]
[1]
 (iii) Deduce the structural formula of the product formed when propene reacts with hydrogen chloride.
[1]
[Total: 12]
IGCSE Chemistry Hakim Abbas Ali (M Sc.)

			Hakim Abbas Ali (M.Sc.)			
Roy			Page 148			
11. W	108 structural formula of Vitar O=	min C is drawn below.)			
(i) ¹	What is its molecular form	OH oh				
(ii)		groups which are circled.	[1]			
The prop	The alcohols form a homologous series. The first four members are methanol, ethanol, propan-1-ol and butan-1-ol. (a) One characteristic of a homologous series is that the physical properties vary in a predictable way. The table below gives the heats of combustion of the first three alcohols.					
ē	alcohol	formula	heat of combustion in kJ/mol			
,	methanol	CH₃OH	-730			
	ethanol	CH ₂ -CH ₂ -OH	-1370			
;	oropan-1-ol	CH ₂ -CH ₂ -CH ₂ -OH	-2020			
t	outan-1-ol	CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH				
	(i) The minus sign indica the reactants. What fo	rm of energy is given out by				
((ii) Is the reaction exothe		[1]			
6	The second second second	n for the complete combustion $O_2 \rightarrow$	on of ethanol.			
TEG						
				_		

(iv) Determine the heat of combustion of butan-1-ol by plotting the heat of the first three alcohols against the number of carbon atoms per m number of carbon atoms per molecule -700	
-700	
-700 -80090010001100110012001300140015001600 - heat of -1700 - combustion/ kJ/mol -18001900200021002200 -	
-800	
-900	
-1000 -1100 -1100 -1200 -1300 -1300 -1400 -1500 -1600 -1600 -1600 -1600 -1600 -1900 -2000 -2000 -2100 -2200	
-11001200130014001500160016001600160018001900200021002200 -	
-110012001300140015001600160016001600160016001000	
-1200 -1300 -1400 -1500 -1600 -1600 -1600 -1600 -1800 -1900 -1900 -2000 -2100 -2200	
-1300	
-1300	
-1400	
-15001600 heat of -1700 combustion/ kJ/mol -18001900200021002200 -	
-1600 - heat of -1700 - combustion/ kJ/mol -18001900200021002200 -	
-1600 - heat of -1700 - combustion / kJ/mol -18001900200021002200 -	
heat of =1700 - combustion/ kJ/mol =1800 - =1900 - =2000 - =2100 - =2200 -	
combustion/ kJ/mol -1800 - -1900 - -2000 - -2100 - -2200 -	
combustion / KJ/mol -1800	
-1900 - -2000 - -2100 - -2200 -	
-2000 - -2100 - -2200	
-2100 - -2200 -	
-2100 - -2200 -	
-2200	
-2300	
-2300	
-2400	
2500	
1975 C 1	
-2600	
-2700	
-2800	

(v)	Describe two other characteristics of homologous series.
	ve the name and structural formula of an isomer of propan-1-ol.
na	ime
(c) M	ethanol is made from carbon monoxide.
	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ the forward reaction is exothermic
(i)	Describe how hydrogen is obtained from alkanes.
(ii)	Suggest a method of making carbon monoxide from methane.
(111)	Which condition, high or low pressure, would give the maximum yield of methan
. 4-1-9	Give a reason for your choice.
	reason
	or each of the following predict the name of the organic product.
(d) Fo	each of the following product to harm of the organic product.
100000	reaction between methanol and ethanoic acid
100000	
(i)	reaction between methanol and ethanoic acid oxidation of propan-1-ol by potassium dichromate(VI)
(i) (ii)	reaction between methanol and ethanoic acid

1	3. \$08	
	Large areas of the Amazon rain forest are cleared each year to grow soya beans. The are cut down and burnt.	tree
	(a) Why do these activities increase the percentage of carbon dioxide in the atmosphere	ere?
		. [2
	(b) Soya beans contain all three main food groups. Two of which are protein carbohydrate.	
	(i) What is the third group?	
	AT DESCRIPTION OF THE PROPERTY.	1
	(ii) Draw the structural formula of a complex carbohydrate such as starch.	
	(ii) Draw the situation formation of a complex company and a source as starce.	
		[3
		fa
	(iii) Compare the structure of a protein with that of a synthetic polyamide. The structure	uctur
	of a typical protein is given below.	
	й ой ой ой	
	How are they similar?	
	Toward troy aminor	
	How are they different?	
	Flow are they dimerently	
		. [
	[To	tal: 9
11	GUSE Chemistre Hakim Abbas Ali (A)	

EAUL			
14. M	IJI07 ers, fats and polyesters all c	ontain the ester linkage.	
(a)	The structural formula of an	ester is given below.	
	н-		
	Name two chemicals that formulae. Show all bonds.	could be used to make this ester an	d draw their structural
	names	and	[2]
	structural formulae		
			[2]
(b)	(i) Draw the structural for	mula of a polyester such as <i>Terylene</i> .	[2]
			(2)
	(iii) Suggest a use for this	polymer.	[2]
	(iii) Suggest a use for this		(2)

Topic 1	4 - Organic chemistry Page 154
(i)	ts are esters. Some fats are saturated, others are unsaturated. Write the word equation for the preparation of the ester, propyl ethanoate. [2] Deduce the structural formula of this ester showing each individual bond.
(iii)	How could you distinguish between these two fats? Fat 1 has the formula $CH_2-CO_2-C_{17}H_{33}\\ I-CH-CO_2-C_{17}H_{33}\\ CH-CO_2-C_{17}H_{33}\\ CH-CO_2-C_$
	The color of the c
(iv)	test
	and[2] Chemistry Hakim Abbay Ali (M.Sc.)

