Numerical Methods

Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Numerical Methods
Booklet	Question Paper

Time Allowed: 35 minutes

Score: /29

Percentage: /100

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- Given that the equation $x^3 + 2x 7 = 0$ has a root between x = 1 and x = 2, use the Newton-Raphson formula with $x_0 = 1$ to find this root correct to 3 decimal places. [4]
- Taking x = 2 as a first approximation, use the Newton-Raphson process to find a root of the equation $\frac{1}{x^2} 0.119 0.018x = 0$. Give your answer correct to 3 significant figures. [4]
- 3 (i) Let $f(x) = x^3 x 1$. Use a sign change method to show that the equation $x^3 x 1 = 0$ has a root between x = 1 and x = 2. [2]
 - (ii) By taking x = 1 as a first approximation to this root, use the Newton-Raphson formula to find this root correct to 3 decimal places. [4]
- 4 (i) Show that the equation $x^3 6x + 2 = 0$ has a root between x = 0 and x = 1. [2]
 - (ii) Use the iterative formula $x_{n+1} = \frac{2 + x_n^3}{6}$ with $x_0 = 0.5$ to fin this root correct to 4 decimal places, showing the result of each iteration. [3]
- 5 (i) Sketch, on a single diagram, the graphs of $y = e^{\frac{1}{5}x}$ and y = x and state the number of roots of the equation $e^{\frac{1}{5}x} = x$.
 - (ii) Use the Newton-Raphson method with $x_0 = 0$ to determine the value of a root of the equation $e^{\frac{1}{5}x} = x$ correct to 3 decimal places. [4]
- 6 The equation $x^3 5x + 3 = 0$ has a root between x = 0 and x = 1.
 - (i) The equation can be rearranged into the form x = g(x) where $g(x) = px^3 + q$. State the values of p and q.
 - (ii) By considering |g'(x)|, show that the iterative form $x_{n+1} = g(x_n)$ with a suitable starting value converges to the root between x = 0 and x = 1. [You are not required to f nd this root.] [2]