Physical Chemistry

Question Paper 1

Level	Pre U
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	Physical Chemistry
Booklet	Question Paper 1

Time Allowed: 59 minutes

Score: /49

Percentage: /100

Grade Boundaries:

For more awesome GCSE and A level resources, visit us at www.savemvexams.co.uk/

Basic Calculations

1. N_2O_4 is a poisonous gas. It can be disposed of safely by reaction with sodium hydroxide.

$$N_2O_4(g) + 2NaOH(aq) \rightarrow NaNO_3(aq) + NaNO_2(aq) + H_2O(I)$$

What is the minimum volume of 0.5 mol dm⁻³ NaOH(aq) needed to dispose of 0.02 mol of N₂O₄?

- **A** 8 cm³
- **B** 12.5 cm³
- **C** 40 cm³
- **D** 80 cm³

2. Hydrogen sulfide, H_2S , can be used to identify a range of metal ions in solution because they form insoluble sulfides. For a metal ion, M^{2+} , the reaction can be summarised by the equation.

$$M^{2+}(aq) + H_2S(aq) \rightarrow MS(s) + 2H^{+}(aq)$$

Which two terms accurately describe this reaction?

- **A** disproportionation and decomposition
- **B** disproportionation and precipitation
- **C** precipitation and acid-base
- **D** redox and acid-base

3. Bone contains calcium salts and other material. When bone is strongly heated in air, calcium oxide is the only solid residue.

When 25.0 g of a bone sample is strongly heated in air, 7.0 g of solid residue remains.

What is the percentage by mass of calcium in the bone sample?

- **A** 10.0%
- **B** 14.0%
- **C** 20.0%
- **D** 28.0%

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4. When iron reacts with aqueous iron(III) ions, iron(II) ions are formed as the only product.

A final mixture, after the reaction has taken place, contains equal numbers of moles of $Fe^{2+}(aq)$ and $Fe^{3+}(aq)$. Assuming the reaction has gone to completion, how many moles of Fe(s) and $Fe^{3+}(aq)$ were in the starting mixture?

	moles of Fe(s)	moles of Fe ³⁺ (aq)
Α	1	2
В	1	3
С	1	5
D	2	3

5. An exciting chemical demonstration is the 'barking dog'. An equation which describes the reaction is shown.

6NO + 2CS₂
$$\rightarrow$$
 3N₂ + 2CO + 2SO₂ + $\frac{1}{4}$ S₈

Carbon disulfide, CS₂, is a liquid with a density of 1.26 g cm⁻³.

Which mass of sulfur would be formed from $5.00\,\mathrm{cm^3}$ of $\mathrm{CS_2}$ if the reaction proceeded with $100\,\%$ yield?

- **A** 0.330 g
- **B** 1.67 g
- **C** 2.65 g
- **D** 5.31 g

6. Hot concentrated nitric acid, HNO₃, is a powerful oxidising agent.

In its reaction with carbon, the oxidation number of carbon increases by 4 and the oxidation number of nitrogen decreases by 1.

How many moles of nitric acid are needed to oxidise one mole of carbon in this reaction?

- **A** 1
- **B** 2
- **C** 3
- **D** 4

7. How many neutrons are present in 0.13g of ¹³C? [L = the Avogadro constant]

- **A** 0.06 L
- **B** 0.07 L
- **C** 0.13L
- **D** 0.91L

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

8.	Phosphorus sulfide, P_4S_3 , is used in small amounts in the tips of matches. On striking a match this compound burns to produce an oxide of phosphorus in the +5 oxidation state and an oxide of sulfur in the +4 oxidation state.							
	Hov	w many moles of	foxy	gen gas are nee	ded	to burn one mo	le of	P ₄ S ₃ in this way?
	Α	6	В	7.5	С	8	D	16
9.	Sod	lium thiosulfate r	edu	ces iodine to iodi	de id	ons.		
	In t	his reaction, how	/ ma	ny moles of elec	tron	s are supplied p	er m	ole of the thiosulfate ions?
	Α	1	В	2	С	3	D	4
10.	allo		y red	ducing niobium o				is used in various stainless steel this reaction, 54.08 g of niobium
	Wha	at is the formula	of th	e niobium chlori	de u	ised?		
	Α	$NbC\mathit{l}_2$	В	$NbC\mathit{l}_3$	С	$NbC\mathit{l}_4$	D	$NbC\mathit{l}_5$

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Atoms

11. In research on the atomic nucleus, scientists have been comparing the stability of isotopes with the same neutron: proton ratio.

Which isotope has the same neutron: proton ratio as ¹⁰B?

A 32P

B ³²S

C 40 Ar

D 40K

12. A sample of chlorine gas, Cl_2 , containing isotopes of mass numbers 35 and 37 was analysed in a mass spectrometer.

How many peaks corresponding to Cl_2^+ were recorded?

A 2

B 3

C 4

D 5

13. Which row correctly describes the types of bonds in the molecules of oxygen, nitrogen and white phosphorus?

	oxygen	nitrogen	phosphorus
Α	one σ and one π	one σ and two π	six σ
В	one σ and one π	two σ and one π	four σ
С	two σ	one σ and two π	four σ
D	two σ	two σ and one π	six σ

14. Nuclear theories predict the number of protons and the number of neutrons that give especially stable nuclei. These numbers are known as the nuclear magic numbers. These numbers include

The most stable nuclei are the 'doubly magic' ones that have a magic number of protons and a magic number of neutrons.

Using this theory, which isotope is the most stable?

A ²He

B ⁸Be

C ⁴⁰Ca

D 210P

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

15.	An ionic compound Q	
-----	---------------------	--

- has an empirical formula NH₂O,
- reacts with NaOH(aq) to produce ammonia gas.

How many electrons are present in the anion of Q?

A 23

B 24

C 31

D 32

16. Which set of solid elements contains a simple molecular structure, a giant covalent (macromolecular) structure and a giant metallic structure?

A Mg, P, S

B P, Si, C

C S, P, Si

D S, Si, A*l*

Energy

17. The interhalogen compound BrF₃ is a volatile liquid which autoionises.

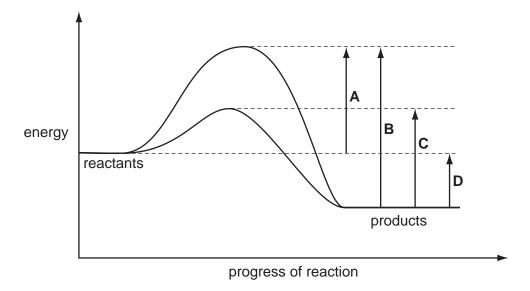
$$2BrF_3 \rightleftharpoons BrF_2^+ + BrF_4^-$$

The electrical conductivity of BrF₃ decreases with increasing temperature.

Which statement is correct?

- **A** The autoionisation process is endothermic and the shape of the cation is linear.
- **B** The autoionisation process is endothermic and the shape of the cation is non-linear.
- **C** The autoionisation process is exothermic and the shape of the cation is linear.
- **D** The autoionisation process is exothermic and the shape of the cation is non-linear.
- 18. The diagram represents the energy changes for some reactions.

W
$$\Delta H = -130 \text{ kJ mol}^{-1}$$
 X
$$\Delta H = +80 \text{ kJ mol}^{-1}$$
Y $\Delta H = -25 \text{ kJ mol}^{-1}$ Z


What are the natures of the conversions $W \to Y$, $Y \to X$ and $Z \to W$?

	$W \rightarrow Y$	$Y \rightarrow X$	$Z \rightarrow W$
Α	exothermic	endothermic	endothermic
В	exothermic	exothermic	endothermic
С	endothermic	exothermic	exothermic
D	endothermic	endothermic	exothermic

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

19. The diagram shows the energy profile for a reaction both with and without a catalyst present.

What is the activation energy of the uncatalysed reverse reaction?

Orbitals and Electron Spin

- 20. How many different orbitals are there in the 3s, 3p and 3d sub-shells respectively?
 - **A** 1, 3, 5
 - **B** 1, 4, 9
 - **C** 2, 6, 10
 - **D** 2, 8, 18
- 21. The atoms *X* and *Y* have the following electronic configurations.

$$X$$
, 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² Y , 1s² 2s² 2p⁴

What is the formula of the compound they are likely to form?

- **A** $X^{2+}(Y^{-})_2$ **B** $X^{2+}Y^{2-}$ **C** XY_4
- D X_2Y_4
- How many subshells and orbitals are there in the third shell?

	subshells	orbitals
Α	2	4
В	2	8
С	3	5
D	3	9

- 23. Which atom has the highest ratio of unpaired electrons to paired electrons in its ground state?
 - boron
 - В carbon
 - nitrogen
 - oxygen

- 24. Which compound is composed of a cation and anion(s) that do **not** contain the same number of electrons as each other?
 - **A** LiH
- **B** NaOH
- C NH₄F
- $TiCl_3$
- 25. In the compound $Co(ClO_3)_2$, the Cl atom has an oxidation state of +5.

How many *d*-orbital electrons are present in the cobalt ion in this compound?

- **A** 5
- **B** 7
- **C** 8
- **D** 9

- 26. The information relates to element Z.
 - Z is in Period 3 of the Periodic Table.
 - Z has a lower electrical conductivity than Mg.
 - A Z atom has a half-filled subshell in its ground state.
 - Z forms an acidic oxide on exposure to air.

What is *Z*?

- **A** Na
- **B** Si
- C P
- **D** Cl
- 27. In hydrogen atoms, the four electron transitions below result in the emission of photons of different frequencies.

Which transition results in the emission of a photon of the highest frequency?

- **A** $3s \rightarrow 2p$
- **B** $4p \rightarrow 3s$
- **C** $5p \rightarrow 4d$
- **D** $6d \rightarrow 5p$
- 28. Which element in period 3 is **not** correctly described?

	element	bonding	structure
Α	chlorine	covalent	simple
В	magnesium	metallic	giant
С	phosphorus	covalent	simple
D	silicon	covalent	simple

29. An ion of manganese has an electronic configuration of [Ar]3d⁴.

Which compound contains this ion?

- **A** MnC l_2
- **B** MnO
- \mathbf{C} Mn₂O₃
- **D** MnO₂

30. Oxygen reacts with platinum(VI) fluoride, PtF₆, as shown.

$$O_2 + PtF_6 \rightarrow O_2^+ PtF_6^-$$

When the first noble gas compound was produced in 1962, it was suggested that xenon should react similarly.

$$Xe + PtF_6 \rightarrow Xe^+PtF_6^-$$

What is the most likely reason for this suggestion being made?

- **A** O and Xe have similar electron affinities.
- **B** O and Xe have similar ionic radii.
- **C** O₂ and Xe have similar electron configurations.
- **D** O₂ and Xe have similar first ionisation energies.
- 31. The table shows the successive ionisation energies for an element Q.

	1st	2nd	3rd	4th
ionisation energy/kJ mol ⁻¹	418	3070	4600	5860

What is the likely formula of the oxide of Q?

- A QO
- $\mathbf{B} \quad \mathsf{Q}_3\mathsf{O}_2$
- \mathbf{C} Q₂O
- $\boldsymbol{D} \quad Q_2O_3$
- Four elements, W, X, Y and Z, are in the potassium to krypton period with consecutive atomic numbers. The table shows the number of unpaired electrons in each atom in its ground state.

element	W	Х	Υ	Z
unpaired electrons	2	1	0	1

In which group of the Periodic Table is element W?

- **A** 4
- **B** 10
- **C** 14
- **D** 16

For more awesome GCSE and A level resources, visit us at www.savemvexams.co.uk/

 $_{33}$. When the N_2^+ ion is formed from N_2 a σ bonding electron is removed.

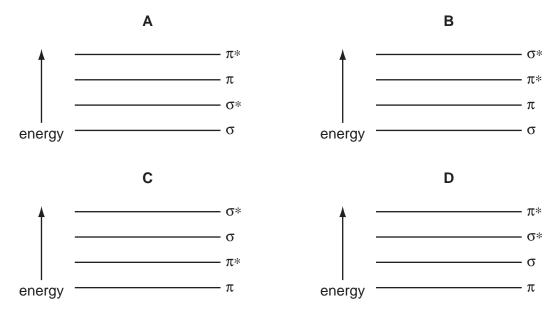
Which statement is correct?

- **A** The bond order decreases so N_2^+ has a stronger, shorter bond than N_2 .
- **B** The bond order decreases so N_2^+ has a weaker, longer bond than N_2 .
- **C** The bond order increases so N_2^+ has a stronger, shorter bond than N_2 .
- **D** The bond order increases so N_2^+ has a weaker, longer bond than N_2 .
- 34. Which atom has the highest ratio of unpaired electrons to paired electrons in its ground state?
 - **A** boron
 - **B** carbon
 - C nitrogen
 - **D** oxygen
- 35. The double salt (NH₄)₂SO₄.FeSO₄.6H₂O is used as a standard in volumetric analysis for titrations with oxidising agents.

What is the electronic configuration of the metal ion in this salt?

- **A** [Ar]4s²3d⁶
- **B** [Ar]4s²3d⁴
- **C** [Ar]3d⁶
- **D** [Ar]3d⁵
- 36. Which sequence of first ionisation energies for the elements of the third period is correct?

	energies / kJ mol ⁻¹								
	Na	Mg	Al	Si	Р	S	C1	Ar	
Α	496	578	738	789	1000	1060	1251	1521	
В	496	738	578	789	1000	1060	1251	1521	
С	496	578	738	789	1012	1000	1251	1521	
D	496	738	578	789	1012	1000	1251	1521	


Covalent Bonding

37.	Ant	timony can be produced in a two-stage process from its ore stibnite, Sb ₂ S ₃ .									
	The	ore is fi	rst roas	ted i	n oxygen, pr	oducing	Sb₄O ₆ ar	nd SO ₂ .			
	The	Sb ₄ O ₆ is	Sb₄O ₆ is then reduced by carbon, producing Sb and CO ₂ .								
		at volum moles of			neasured at	room te	emperatur	e and pre	ssure, is p	roduced on	processing
	Α	15 dm ³		В	180 dm ³	С	360 dm ³	D	720 dm ³		
38.	A co	ovalent n	nolecule	e cor	ntains						
		•	14 ele	ctror	ns,						
		•	one lo	ne p	air of electro	ns,					
		•	two π k	ono	ls.						
	Wha	at is the	molecul	e?							
	Α	C_2H_4		В	HCN	С	H_2O_2	D	N_2		
39.	WI	hich state	ement a	abou	t antibondin	g is not	correct?				
	Α	Filling a	ın antibo	ondi	ng orbital lov	vers the	bond ord	er of a mo	lecule by 1		
	В	For a g			l overlap, tl	ne antib	oonding o	rbital is a	lways high	ner in energ	y than the
	С	Stable r	molecul	es c	annot have a	any elec	trons in a	ntibonding	orbitals.		
	D	The an	tibondir	ig o	rbitals are fo	ound ou	utside the	region of	space bet	ween the tw	o bonding

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

40. The carbon atoms in ethene are bonded through σ and π bonds. When atomic orbitals overlap they form bonding (σ and π) and antibonding (σ * and π *) orbitals.

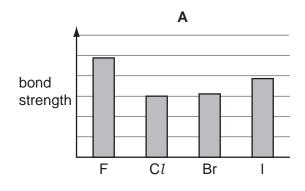
What is the correct order of energies of the σ and π orbitals in an ethene molecule?

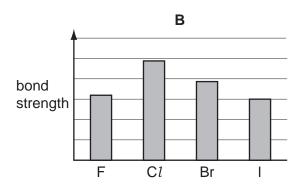
41. Cyanogen, (CN)₂, is a colourless, toxic gas with a pungent smell. Its molecule contains a single C–C bond.

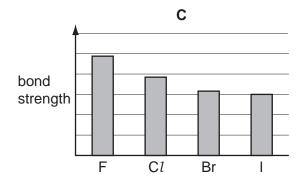
Which feature of the cyanogen molecule is **not** correct?

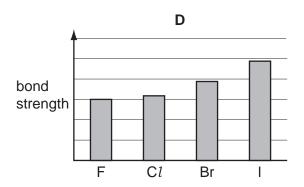
- A Both carbon atoms are at a carboxylic acid functional group level.
- **B** The molecule contains four π bonds.
- **C** The molecule contains four lone pairs of electrons.
- **D** The molecule is linear.
- 42. In which pair of molecules are the values of the bond angles the closest?
 - A BF₃ and NH₃
 - **B** C₂H₄ and BF₃
 - C H₂O and C₂H₄
 - **D** CH₄ and H₂O

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/


43. Which shows the chemical bonds in order of increasing bond length?


Α	C <i>l</i> –C <i>l</i>	F–F	O=O	$N \equiv N$
В	F–F	C <i>l</i> –C <i>l</i>	O=O	N≡N
С	N≡N	O=O	C <i>l</i> –C <i>l</i>	F–F
D	N≡N	0=0	F–F	C <i>l</i> –C <i>l</i>


- 44. Which statement about bond formation is **not** correct?
 - **A** A triple bond consists of one σ bond and two π bonds.
 - **B** A π bond restricts rotation about the σ bond axis.
 - **C** Bonds formed from atomic s orbitals are always σ bonds.
 - **D** End-to-end orbital overlap results in a bond with electron density above and below the bond axis.


Non-Covalent Bonding

- 45. Group I elements form diatomic molecules in the gas phase. Which molecule has the **smallest** dipole moment?
 - A Na—Li
 - **B** Na—Na
 - C Na—Rb
 - **D** Na—Cs
- 46. In which process are hydrogen bonds broken?
 - $\mathbf{A} \quad H_2(I) \ \to \ H_2(g)$
 - $\textbf{B} \quad \text{NH}_3(I) \, \rightarrow \, \text{NH}_3(g)$
 - $\textbf{C} \quad 2HI(g) \, \rightarrow \, H_2(g) \, + \, I_2(g)$
 - **D** $CH_4(g) \rightarrow C(g) + 4H(g)$
- 47. How does the strength of the halogen-halogen covalent bond change as Group 17 is descended?

For more awesome GCSE and A level resources, visit us at www.savemvexams.co.uk/

The shape of the PCl₅ molecule in the gas phase is trigonal bipyramidal. 48.

The chlorine atoms can be replaced one at a time by fluorine atoms, the axial chlorine atoms being replaced first, then the equatorial atoms.

Which molecule does not have a dipole moment?

A PClF₄

B PCl_2F_3 **C** PCl_3F_2

D PCl₄F

49. The alkanes used to be known as the paraffin hydrocarbons - paraffin meaning 'lack of affinity' (i.e. unreactive).

Which statement is the best explanation of the 'lack of affinity' in alkanes?

- The atoms are arranged tetrahedrally around each carbon atom.
- The intermolecular forces are van der Waals forces. В
- C There are no significant dipole moments in C–H and C–C bonds.
- D There is free rotation about C–C single bonds.