| Centre Number | Candidate Number | Candidate Name | |---------------|------------------|----------------| | | | | | | | | ### NAMIBIA SENIOR SECONDARY CERTIFICATE ### PHYSICAL SCIENCE HIGHER LEVEL 8322/2 PAPER 2 2 hours Marks 100 **2017** Additional materials: Non-programmable calculator #### INSTRUCTIONS AND INFORMATION TO CANDIDATES - Candidates answer on the Question Paper in the spaces provided. - Write your Centre Number, Candidate Number and Name in the spaces at the top of this page. - Write in dark blue or black pen. - · You may use a soft pencil for any diagrams, graphs or rough working. - · Do not use correction fluid. - Do not write in the margin For Examiner's Use. #### **Section A** • Answer all questions. #### Section B - Answer any two questions, one on physics and one on chemistry. - · Write your answers on the answer sheets at the end of this booklet. - The number of marks is given in brackets [ ] at the end of each question or part question. - You will lose marks if you do not show your working or if you do not use appropriate units. - Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall $g = 10 \text{ m/s}^2$ ). - The Periodic Table is printed on page 20. | For Exami | ner`s Use | |-----------|-----------| | Section A | | | Section B | | | 1 | | | 2 | | | 3 | | | 4 | | | Marker | | Checker This document consists of **20** printed pages. Republic of Namibia MINISTRY OF EDUCATION, ARTS AND CULTURE # **SECTION A** Answer **all** the questions in this section. The following is a list of experimental techniques. 1 | | chromatography | crystallisation | filtration | | |-----|---------------------------------|-------------------------------|------------------|-----| | | fractional distillation | simple distillation | precipitation | | | Fro | m the list choose a suitable | technique for each of the fol | lowing. | | | (a) | Identification of ions in a w | ater sample. | | | | | | | | [1] | | (b) | Obtaining pure water from | pond water. | | | | | | | | [1] | | (c) | Obtaining a soluble salt pr | epared from an acid and exc | ess metal oxide. | | | | | | | [1] | | (d) | Purification of table salt from | m sea salt. | | | | | | | | [1] | | (e) | Separation of crude oil frac | ctions. | | | | | | | | [1] | | | | | | [5] | | | | | | r_1 | 2 Trolley A of mass 6 kg runs down a sloping track as shown in Fig. 2.1. Fig. 2.1 The vertical distance through which trolley **A** moves is 1.5 m. (a) Ignoring friction between trolley $\mathbf{A}$ and the track, calculate the kinetic energy of trolley $\mathbf{A}$ at the bottom of the track. (Take g = 10 N/kg). Kinetic energy.....[3] - (b) Trolley A then collides with a second stationary trolley B of 4kg and the trolleys lock together. - (i) Calculate the velocity of trolley **A** before the impact. Velocity of trolley A..... m/s [2] (ii) Calculate the velocity of the two trolleys after the impact. Velocity of the two trolleys ......m/s [3] [8] **3** Table 3.1 shows information about halogens. # Table 3.1 | Element | Electronegativity | State at room temperature | Boiling Point/°C | |----------|-------------------|---------------------------|------------------| | fluorine | 4.0 | gas | -188 | | chlorine | 3.0 | gas | -34 | | bromine | 2.8 | liquid | 59 | | iodine | 2.7 | solid | 184 | | (a) | Sta | te <b>one</b> other property, of the elements in the table, that also shows a trend. | [1] | |-----|------|--------------------------------------------------------------------------------------|-----| | (b) | Ex | plain the trend in boiling point from fluorine to iodine. | ۲.1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [3] | | (c) | Flu | orine can oxidise chloride ions to chlorine. | | | | (i) | Use the information in the table to explain this fact. | | | | | | | | | | | [2] | | | (ii) | Write down the half-equation for this oxidation. | | | | | | [2] | | | | | [8] | The displacement-time graph of a vibrating tuning fork is shown in Fig. 4.1. 4 | | | Fig. 4.1 | | |-----|-------|---------------------------------------------------------------------------------------|-----| | (a) | Des | scribe the motion of the tuning fork. | | | | | | [1] | | (b) | Use | e the graph in Fig. 4.1 to determine | | | | (i) | the maximum amplitude, | | | | | Maximum amplitude mm | [1] | | | (ii) | the frequency of the tuning fork. | | | | | | | | | | | | | | | | | | | | FrequencyHz | [3] | | | (iii) | State the time at which the speed and the acceleration of the tuning fork is maximum. | | | | | Time when speed is maximums | | | | | Time when acceleration is maximums | [2] | | (c) | Exp | plain why the amplitude decreases with time. | | | | | | | | | | | | | | | | | | | | | [2] | | (d) | (i) | When a vibrating tuning fork is held against the body of a musical instrument, the sound produced has the same frequency as the frequency of the tuning fork. | | |-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | | | Explain why. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [3] | | | (ii) | Describe how the body of a musical instrument produces a sound wave. | | | | | | | | | | | | | | | | | | | | | [2] | [14] **5** Fig. 5.1 shows the process of extracting aluminium from its ore. Fig. 5.1 | (a) | State the name of the ore of aluminium and give the formula of the main constituent in the ore. | [1] | |-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | (b) | Aluminium is a very reactive metal and yet it is used to make products such as cooking pans. | [.] | | | Explain why aluminium is used to make such items. | | | | | | | | | | | | | | | | | | | | | [3] | | (c) | Write down equations for the reactions occurring at the anodes and cathode. | | | | Anodes | | | | Cathode | [2] | | (d) | Copper is extracted from its ore, copper pyrites, which is mainly copper sulfide. Copper sulfide is separated from the ore and heated in oxygen to remove sulfur as sulfur dioxide. | | | | Explain why aluminium cannot be extracted in this way. | | | | | | | | | [1] | [7] **6** Fig. 6.1 shows a sketch of a generator. Fig. 6.1 | (a) | What type of generator is shown in Fig. 6.1? | | |-----|---------------------------------------------------------------|-----| | (b) | Explain how current is produced by the generator in Fig. 6.1. | [1] | | | | | | | | | | | | [2] | (c) The output of the generator is connected to a cathode-ray oscilloscope (c.r.o.). Fig. 6.2 shows a screen of the c.r.o. settings time base: 5ms/div y - gain : 8v/div Fig. 6.2 (i) Use the diagram to calculate the peak voltage. Peak voltage.....[2] | | (ii) | Calculate the root-mean-square (RMS) value of the potential difference. | | Exar<br>L | |-----|------|----------------------------------------------------------------------------------------------------------------------|-----|-----------| | | | Root-mean-square value | [2] | | | (d) | | edict how the shape of the graph on the screen would change if both a ode and a capacitor were added to the circuit. | | | | | | | [1] | | | | | | [8] | | 7 | O | zone | is found in both the upper and lower atmosphere. | | |-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | (a) | | tinguish between the effects of ozone in both the upper and lower nosphere. | | | | | | | | | | | | | | | | | | | | | [2] | | (b) | the | e concentration of ozone in the upper atmosphere was depleted due to presence of CFC's (chlorofluorocarbons). In the lower atmosphere the y stable CFC's have no effect on ozone concentration. | | | | (i) | Explain why CFC's have no effect on lower level ozone concentrations. | | | | | | | | | | | | | | | | | | | | | [2] | | | (ii) | Describe the reactions that led to ozone depletion in the upper atmosphere. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [/1] | | | | | [4] | | (c) | | one acts as a greenhouse gas. | | | | | scribe the effect of greenhouse gases on global temperatures and how can affect the planet. | | | | | | | | | | | | | | | | | | | | | [2] | | | | | [40] | | | | | [10] | ## **SECTION B** Answer **one** Physics and **one** Chemistry question. Write your answers on the answer sheet provided at the end of the booklet. ## **PHYSICS SECTION** 2 | | | nromatic light of wavelength 200 nm falls onto the clean metal plate of a ely charged electroscope. The electroscope discharges. | | |-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | (a) | (i) | Describe what causes the discharge of the electroscope. | [1] | | | (ii) | In another experiment light of the same frequency is incident on the cathode in an evacuated glass tube. The maximum kinetic energy of the electrons is measured as $2.73 \times 10^{-19} J$ . | | | | | Calculate the minimum frequency of light that will cause the emission of electrons from the metal surface. (h = $6.626 \times 10^{-34}$ Js; c = $3.0 \times 10^{8}$ m/s) | [4] | | (b) | | e emission of electrons is explained using the particle nature of light, where energy of light is quantised. | | | | (i) | State what is meant by the phrase the energy of light is quantised. | [1] | | | (ii) | Describe how this idea explains the frequency dependency of the emission of electrons from a metal. | [3] | | (c) | Lig | ht is described as having a dual wave-particle nature. | | | | (i) | Give evidence of light showing wave nature. | [2] | | | (ii) | Electrons can also be described as having a dual wave-particle nature. Give evidence for electrons showing particle and wave behaviour. | [2] | | (d) | Des | scribe the production of monochromatic light by a laser. | [7] | | | | | [20] | | | | escent light bulbs are made up of a tungsten filament in a glass bulb filled inert gas. | | | (a) | (i) | In terms of the kinetic particle theory explain the expansion of the tungsten filament as its temperature increases when switched on. | [3] | | | (ii) | Describe the transfer of heat through the filament. | [3] | | | (iii) | Suggest why the glass bulb gets hot. | [1] | | | (iv) | State why the bulb is filled with an inert gas. | [1] | | (b) | | sistivity is an intrinsic property of a material that measures how strongly a en material opposes the flow of current. | | | | (i) | State the relationship between the resistance of the tungsten filament of a light bulb, its resistivity, length and cross-sectional area. Do not give a formula. | [3] | | | (ii) | Describe a method to determine the cross-sectional area. | [4] | (c) The resistivity of a semiconductor, like silicon, decreases with increasing temperature. Explain this in terms of bonding. [2] (d) Diodes are semiconductor devices that are used for current rectification. (i) Draw a simple circuit diagram including an a.c. power supply, a diode and a load. [2] (ii) Sketch the trace observed on the screen of an oscilloscope connected across the load. [1] [20] # **CHEMISTRY SECTION** | 3 | (a) | ) Use s, p and d notation to show the electron configuration of a chloride ion. | | | | | | | |---|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--| | | (b) | Explain the change in radius when a chlorine atom changes into a chloride io | | | | | | | | | (c) | With the help of a dot and cross diagram explain how potassium chloride is formed from potassium and chlorine atoms. | | | | | | | | | (d) | Explain why the melting point of sodium chloride is higher than that of potassium chloride. | | | | | | | | | (e) | | plain why molten sodium chloride is a good conductor of electricity but not d sodium chloride. | [2] | | | | | | | (f) | <ul><li>(f) With reference to electrical conductivity, explain the difference between diamo and graphite.</li><li>(g) A healthy diet includes milk. Milk can be up to 5% fat. Fat is a derivative glycerol and fatty acids.</li></ul> | | | | | | | | | (g) | | | | | | | | | | | (i) | Name and draw the link between glycerol and 3 fatty acids. | [2] | | | | | | | | (ii) | Compare the structure of fat with terylene. | | | | | | | | | | | [20] | | | | | | 4 | (a) | Des | scribe the process of separating nitrogen from liquid air. | [4] | | | | | | | (b) | Give a reason why nitrogen gas is unreactive. Draw a molecule to support y<br>answer. | | | | | | | | | (c) | c) (i) Name and discuss the process which uses nitrogen gas to m<br>ammonia. State the reaction conditions for this reaction and i<br>balanced chemical equation with the state symbols. | | [5] | | | | | | | | (ii) | Construct an equilibrium constant expression, $K_c$ , for the reaction in <b>(c) (i)</b> , using symbols. | [1] | | | | | | | | (iii) | The $K_c$ for this reaction, at 673 K is 8.60. At the equilibrium there are $1.00\times10^{-2}$ moles of ammonia and $1.00\times10^{-2}$ moles of hydrogen in a 10 dm <sup>3</sup> flask at 673 K. | | | | | | | | | | Calculate the concentration of nitrogen in the flask at equilibrium. | [4] | | | | | | | (d) | | formation of ammonia from nitrogen and hydrogen is an exothermic process. Dain how the $K_{\text{\tiny c}}$ will change if the | | | | | | | | | (i) | temperature is decreased, | [2] | | | | | | | | (ii) | pressure is increased. | [2] | | | | | | | | | | [20] | | | | | | | | | | | | | | | 8322/2/17 **[Turn over** | Answer sheets for Section B | |-----------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | <br>•••• | |----------| | <br> | | <br>•••• | | <br> | | •••• | | •••• | | <br>•••• | | <br> | | <br> | | <br> | | <br>•••• | | <br>•••• | | <br> | | <br>•••• | | <br> | | <br> | | | | <br> | | | | | | 0 | 4 <b>He</b> Helium | 20<br>Neon<br>10<br>40<br>Ar<br>Argon | 84 <b>%</b> | Krypton<br>36 | 131 <b>Xe</b> Xenon Xenon | <b>Rn</b><br>Radon<br>86 | | 175<br><b>Lu</b><br>Lutetium<br>71 | <b>Lr</b><br>Lawrencium<br>103 | | | | |--------------------------------------------------|-------|-----|---------------------------|---------------------------------------|------------------------|----------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|---------------------------------| | | Group | IIΛ | | Fluorine 9 35,5 Chlorine | 80 % | Bromine<br>35 | 127 <b>T</b> lodine 53 | At<br>Astatine<br>85 | | 73<br><b>Yb</b><br>Ytterbium<br>70 | Nobelium<br>102 | | | | | | | IA | | 16<br>Oxygen<br>8<br>32<br>Suffur | 62 | Selenium<br>34 | 128<br><b>Te</b><br>Tellurium<br>52 | <b>Po</b><br>Polonium<br>84 | | 169<br><b>Tm</b><br>Thulium<br>69 | <b>Md</b><br>Mendelevium<br>101 | | | | | | | ^ | | | | N<br>Nitrogen<br>7<br>31<br><b>P</b><br>Phosphorus | 75 | 33 A | 122<br><b>Sb</b><br>Antimony<br>51 | 209<br><b>Bis</b><br>Bismuth<br>83 | | 167<br><b>Er</b><br>Erbium<br>68 | <b>Fm</b><br>Fermium<br>100 | | | | | | ΛI | | 12 Carbon 6 28 Silicon | 73 | Germanium<br>32 | <b>Sn</b> Tin 50 | 207<br><b>Pb</b><br>Lead<br>82 | | 165<br><b>Ho</b><br>Holmium<br>67 | <b>Es</b><br>Einsteinium<br>99 | | | | | | III | | 11 B Boron 5 27 A/I | 2 2 | Gallium<br>31 | 115<br>In<br>Indium<br>49 | 204<br><b>T I</b><br>Thallium<br>81 | | 162<br><b>Dy</b><br>Dysprosium<br>66 | Californium<br>98 | | | | | | | | | | | | 65 | Zinc<br>30 | 112<br><b>Cd</b><br>Cadmium<br>48 | 201<br><b>Hg</b><br>Mercury<br>80 | | 159<br><b>Tb</b><br>Terbium<br>65 | <b>BK</b><br>Berkelium<br>97 | | | nents | | | | | 64 | Copper<br>29 | 108<br><b>Ag</b><br>Silver<br>47 | 197<br><b>Au</b><br>Gold<br>79 | | 157<br><b>Gd</b><br>Gadolinium<br>64 | <b>Cm</b><br>Curium<br>96 | | | | | DATA SHEET<br>lic Table of the Elen | | dno | | | | 59<br><b>X</b> | Nickel<br>28 | 106<br><b>Pd</b><br>Palladium<br>46 | 195<br><b>Pt</b><br>Platinum<br>78 | | 152<br><b>Eu</b><br>Europium<br>63 | <b>Am</b><br>Americium<br>95 | | | | DATA SHEET<br>The Periodic Table of the Elements | | | | | 29 | Cobalt<br>27 | 103<br><b>Rh</b><br>Rhodium<br>45 | 192<br><b>Ir</b><br>Iridium<br>77 | | 150<br><b>Sm</b><br>Samarium<br>62 | <b>Pu</b><br>Plutonium<br>94 | | | | | The | | | 1<br><b>H</b><br>Hydrogen | | 56 | lron<br>26 | Ru<br>Ruthenium<br>44 | 190<br><b>Os</b><br>Osmium<br>76 | | Pm<br>Promethium<br>61 | Neptunium<br>93 | | | | | | | | | | 55 | Manganese<br>25 | <b>Tc</b><br>Technetium<br>43 | 186<br><b>Re</b><br>Rhenium<br>75 | | 144<br><b>Nd</b><br>Neodymium<br>60 | 238<br><b>U</b><br>Uranium<br>92 | | | | | | | | | | | | | <b>ئ</b> 25 | Chromium<br>24 | 96<br><b>Mo</b><br>Molybdenum<br>42 | 184<br><b>W</b><br>Tungsten<br>74 | | 141<br><b>Pr</b><br>Praseodymium<br>59 | <b>Pa</b><br>Protactinium<br>91 | | | | | | | | | 51 | Vanadium<br>23 | 93<br><b>Nb</b><br>Niobium<br>41 | 181<br><b>Ta</b><br>Tantalum<br>73 | | 140<br><b>Ce</b><br>Cerium<br>58 | 232<br><b>Th</b><br>Thorium<br>90 | | | | | | | | 48 | Titanium<br>22 | 91<br><b>Zr</b><br>Zirconium<br>40 | 178<br><b>Hf</b><br>Hafnium<br>72 | | 1 | nass<br>umber | | | | | | | | | | 45 | Scandium<br>21 | 89<br><b>Y</b><br>Yttrium<br>39 | 139 | 227<br><b>Ac</b><br>Actinium<br>89 † | es | a = relative atomic mass <b>X</b> = atomic symbol b = proton (atomic) numbe | | | | | | | II | | 9 Beryllium 4 24 Magnesium | 40 | C C | 88<br><b>Sr</b><br>Strontium<br>38 | 137<br><b>Ba</b><br>Barium<br>56 | 226<br><b>Ra</b><br>Radium<br>88 | *58 - 71 Lanthanoid series<br>†90 - 103 Actinoid series | в <b>Х</b> | | | | | | | _ | | Lithium 3 23 Na Sodium | 88 | Potassium<br>19 | 85<br><b>Rb</b><br>Rubidium<br>37 | 133<br>Cs<br>Caesium<br>55 | <b>Fr</b><br>Francium<br>87 | *58 - 71 La<br>†90 - 103 A | Key | | | | The volume of one mole of any gas is 24 $\mbox{dm}^3$ at room temperature and pressure (r.t.p.).