Centre Number	Candidate Number	Candidate Name

NAMIBIA SENIOR SECONDARY CERTIFICATE

PHYSICAL SCIENCE HIGHER LEVEL

8322/2

PAPER 2 2 hours

Marks 100 **2017**

Additional materials: Non-programmable calculator

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- Candidates answer on the Question Paper in the spaces provided.
- Write your Centre Number, Candidate Number and Name in the spaces at the top of this page.
- Write in dark blue or black pen.
- · You may use a soft pencil for any diagrams, graphs or rough working.
- · Do not use correction fluid.
- Do not write in the margin For Examiner's Use.

Section A

• Answer all questions.

Section B

- Answer any two questions, one on physics and one on chemistry.
- · Write your answers on the answer sheets at the end of this booklet.
- The number of marks is given in brackets [] at the end of each question or part question.
- You will lose marks if you do not show your working or if you do not use appropriate units.
- Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall $g = 10 \text{ m/s}^2$).
- The Periodic Table is printed on page 20.

For Exami	ner`s Use
Section A	
Section B	
1	
2	
3	
4	
Marker	

Checker

This document consists of **20** printed pages.

Republic of Namibia

MINISTRY OF EDUCATION, ARTS AND CULTURE

SECTION A

Answer **all** the questions in this section.

The following is a list of experimental techniques. 1

	chromatography	crystallisation	filtration	
	fractional distillation	simple distillation	precipitation	
Fro	m the list choose a suitable	technique for each of the fol	lowing.	
(a)	Identification of ions in a w	ater sample.		
				[1]
(b)	Obtaining pure water from	pond water.		
				[1]
(c)	Obtaining a soluble salt pr	epared from an acid and exc	ess metal oxide.	
				[1]
(d)	Purification of table salt from	m sea salt.		
				[1]
(e)	Separation of crude oil frac	ctions.		
				[1]
				[5]
				r_1

2 Trolley A of mass 6 kg runs down a sloping track as shown in Fig. 2.1.

Fig. 2.1

The vertical distance through which trolley **A** moves is 1.5 m.

(a) Ignoring friction between trolley \mathbf{A} and the track, calculate the kinetic energy of trolley \mathbf{A} at the bottom of the track. (Take g = 10 N/kg).

Kinetic energy.....[3]

- (b) Trolley A then collides with a second stationary trolley B of 4kg and the trolleys lock together.
 - (i) Calculate the velocity of trolley **A** before the impact.

Velocity of trolley A..... m/s [2]

(ii) Calculate the velocity of the two trolleys after the impact.

Velocity of the two trolleysm/s [3]

[8]

3 Table 3.1 shows information about halogens.

Table 3.1

Element	Electronegativity	State at room temperature	Boiling Point/°C
fluorine	4.0	gas	-188
chlorine	3.0	gas	-34
bromine	2.8	liquid	59
iodine	2.7	solid	184

(a)	Sta	te one other property, of the elements in the table, that also shows a trend.	[1]
(b)	Ex	plain the trend in boiling point from fluorine to iodine.	۲.1
			[3]
(c)	Flu	orine can oxidise chloride ions to chlorine.	
	(i)	Use the information in the table to explain this fact.	
			[2]
	(ii)	Write down the half-equation for this oxidation.	
			[2]
			[8]

The displacement-time graph of a vibrating tuning fork is shown in Fig. 4.1. 4

		Fig. 4.1	
(a)	Des	scribe the motion of the tuning fork.	
			[1]
(b)	Use	e the graph in Fig. 4.1 to determine	
	(i)	the maximum amplitude,	
		Maximum amplitude mm	[1]
	(ii)	the frequency of the tuning fork.	
		FrequencyHz	[3]
	(iii)	State the time at which the speed and the acceleration of the tuning fork is maximum.	
		Time when speed is maximums	
		Time when acceleration is maximums	[2]
(c)	Exp	plain why the amplitude decreases with time.	
			[2]

(d)	(i)	When a vibrating tuning fork is held against the body of a musical instrument, the sound produced has the same frequency as the frequency of the tuning fork.	
		Explain why.	
			[3]
	(ii)	Describe how the body of a musical instrument produces a sound wave.	
			[2]

[14]

5 Fig. 5.1 shows the process of extracting aluminium from its ore.

Fig. 5.1

(a)	State the name of the ore of aluminium and give the formula of the main constituent in the ore.	[1]
(b)	Aluminium is a very reactive metal and yet it is used to make products such as cooking pans.	[.]
	Explain why aluminium is used to make such items.	
		[3]
(c)	Write down equations for the reactions occurring at the anodes and cathode.	
	Anodes	
	Cathode	[2]
(d)	Copper is extracted from its ore, copper pyrites, which is mainly copper sulfide. Copper sulfide is separated from the ore and heated in oxygen to remove sulfur as sulfur dioxide.	
	Explain why aluminium cannot be extracted in this way.	
		[1]

[7]

6 Fig. 6.1 shows a sketch of a generator.

Fig. 6.1

(a)	What type of generator is shown in Fig. 6.1?	
(b)	Explain how current is produced by the generator in Fig. 6.1.	[1]
		[2]

(c) The output of the generator is connected to a cathode-ray oscilloscope (c.r.o.). Fig. 6.2 shows a screen of the c.r.o.

settings

time base: 5ms/div

y - gain : 8v/div

Fig. 6.2

(i) Use the diagram to calculate the peak voltage.

Peak voltage.....[2]

	(ii)	Calculate the root-mean-square (RMS) value of the potential difference.		Exar L
		Root-mean-square value	[2]	
(d)		edict how the shape of the graph on the screen would change if both a ode and a capacitor were added to the circuit.		
			[1]	
			[8]	

7

O	zone	is found in both the upper and lower atmosphere.	
(a)		tinguish between the effects of ozone in both the upper and lower nosphere.	
			[2]
(b)	the	e concentration of ozone in the upper atmosphere was depleted due to presence of CFC's (chlorofluorocarbons). In the lower atmosphere the y stable CFC's have no effect on ozone concentration.	
	(i)	Explain why CFC's have no effect on lower level ozone concentrations.	
			[2]
	(ii)	Describe the reactions that led to ozone depletion in the upper atmosphere.	
			[/1]
			[4]
(c)		one acts as a greenhouse gas.	
		scribe the effect of greenhouse gases on global temperatures and how can affect the planet.	
			[2]
			[40]
			[10]

SECTION B

Answer **one** Physics and **one** Chemistry question. Write your answers on the answer sheet provided at the end of the booklet.

PHYSICS SECTION

2

		nromatic light of wavelength 200 nm falls onto the clean metal plate of a ely charged electroscope. The electroscope discharges.	
(a)	(i)	Describe what causes the discharge of the electroscope.	[1]
	(ii)	In another experiment light of the same frequency is incident on the cathode in an evacuated glass tube. The maximum kinetic energy of the electrons is measured as $2.73 \times 10^{-19} J$.	
		Calculate the minimum frequency of light that will cause the emission of electrons from the metal surface. (h = 6.626×10^{-34} Js; c = 3.0×10^{8} m/s)	[4]
(b)		e emission of electrons is explained using the particle nature of light, where energy of light is quantised.	
	(i)	State what is meant by the phrase the energy of light is quantised.	[1]
	(ii)	Describe how this idea explains the frequency dependency of the emission of electrons from a metal.	[3]
(c)	Lig	ht is described as having a dual wave-particle nature.	
	(i)	Give evidence of light showing wave nature.	[2]
	(ii)	Electrons can also be described as having a dual wave-particle nature. Give evidence for electrons showing particle and wave behaviour.	[2]
(d)	Des	scribe the production of monochromatic light by a laser.	[7]
			[20]
		escent light bulbs are made up of a tungsten filament in a glass bulb filled inert gas.	
(a)	(i)	In terms of the kinetic particle theory explain the expansion of the tungsten filament as its temperature increases when switched on.	[3]
	(ii)	Describe the transfer of heat through the filament.	[3]
	(iii)	Suggest why the glass bulb gets hot.	[1]
	(iv)	State why the bulb is filled with an inert gas.	[1]
(b)		sistivity is an intrinsic property of a material that measures how strongly a en material opposes the flow of current.	
	(i)	State the relationship between the resistance of the tungsten filament of a light bulb, its resistivity, length and cross-sectional area. Do not give a formula.	[3]
	(ii)	Describe a method to determine the cross-sectional area.	[4]

(c) The resistivity of a semiconductor, like silicon, decreases with increasing temperature. Explain this in terms of bonding. [2]
(d) Diodes are semiconductor devices that are used for current rectification.
(i) Draw a simple circuit diagram including an a.c. power supply, a diode and a load. [2]
(ii) Sketch the trace observed on the screen of an oscilloscope connected across the load. [1]

[20]

CHEMISTRY SECTION

3	(a)) Use s, p and d notation to show the electron configuration of a chloride ion.						
	(b)	Explain the change in radius when a chlorine atom changes into a chloride io						
	(c)	With the help of a dot and cross diagram explain how potassium chloride is formed from potassium and chlorine atoms.						
	(d)	Explain why the melting point of sodium chloride is higher than that of potassium chloride.						
	(e)		plain why molten sodium chloride is a good conductor of electricity but not d sodium chloride.	[2]				
	(f)	(f) With reference to electrical conductivity, explain the difference between diamo and graphite.(g) A healthy diet includes milk. Milk can be up to 5% fat. Fat is a derivative glycerol and fatty acids.						
	(g)							
		(i)	Name and draw the link between glycerol and 3 fatty acids.	[2]				
		(ii)	Compare the structure of fat with terylene.					
				[20]				
4	(a)	Des	scribe the process of separating nitrogen from liquid air.	[4]				
	(b)	Give a reason why nitrogen gas is unreactive. Draw a molecule to support y answer.						
	(c)	c) (i) Name and discuss the process which uses nitrogen gas to m ammonia. State the reaction conditions for this reaction and i balanced chemical equation with the state symbols.		[5]				
		(ii)	Construct an equilibrium constant expression, K_c , for the reaction in (c) (i) , using symbols.	[1]				
		(iii)	The K_c for this reaction, at 673 K is 8.60. At the equilibrium there are 1.00×10^{-2} moles of ammonia and 1.00×10^{-2} moles of hydrogen in a 10 dm ³ flask at 673 K.					
			Calculate the concentration of nitrogen in the flask at equilibrium.	[4]				
	(d)		formation of ammonia from nitrogen and hydrogen is an exothermic process. Dain how the $K_{\text{\tiny c}}$ will change if the					
		(i)	temperature is decreased,	[2]				
		(ii)	pressure is increased.	[2]				
				[20]				

8322/2/17 **[Turn over**

Answer sheets for Section B

 ••••
 ••••
••••
••••
 ••••
 ••••
 ••••
 ••••

		0	4 He Helium	20 Neon 10 40 Ar Argon	84 %	Krypton 36	131 Xe Xenon Xenon	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103			
	Group	IIΛ		Fluorine 9 35,5 Chlorine	80 %	Bromine 35	127 T lodine 53	At Astatine 85		73 Yb Ytterbium 70	Nobelium 102			
		IA		16 Oxygen 8 32 Suffur	62	Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101			
		^				N Nitrogen 7 31 P Phosphorus	75	33 A	122 Sb Antimony 51	209 Bis Bismuth 83		167 Er Erbium 68	Fm Fermium 100	
			ΛI		12 Carbon 6 28 Silicon	73	Germanium 32	Sn Tin 50	207 Pb Lead 82		165 Ho Holmium 67	Es Einsteinium 99		
		III		11 B Boron 5 27 A/I	2 2	Gallium 31	115 In Indium 49	204 T I Thallium 81		162 Dy Dysprosium 66	Californium 98			
							65	Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97	
nents					64	Copper 29	108 Ag Silver 47	197 Au Gold 79		157 Gd Gadolinium 64	Cm Curium 96			
DATA SHEET lic Table of the Elen		dno				59 X	Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95		
DATA SHEET The Periodic Table of the Elements					29	Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77		150 Sm Samarium 62	Pu Plutonium 94			
The			1 H Hydrogen		56	lron 26	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium 93			
					55	Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium 92			
								ئ 25	Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
							51	Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium 90	
					48	Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72		1	nass umber			
					45	Scandium 21	89 Y Yttrium 39	139	227 Ac Actinium 89 †	es	a = relative atomic mass X = atomic symbol b = proton (atomic) numbe			
		II		9 Beryllium 4 24 Magnesium	40	C C	88 Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88	*58 - 71 Lanthanoid series †90 - 103 Actinoid series	в Х			
		_		Lithium 3 23 Na Sodium	88	Potassium 19	85 Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58 - 71 La †90 - 103 A	Key			

The volume of one mole of any gas is 24 \mbox{dm}^3 at room temperature and pressure (r.t.p.).