Centre Number	Candidate Number	Candidate Name

NAMIBIA SENIOR SECONDARY CERTIFICATE

PHYSICAL SCIENCE ORDINARY LEVEL

4323/2

PAPER 2 2 hours

Marks 100 **2017**

Additional Materials: Non-programmable calculator

Ruler

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- Candidates answer on the Question Paper in the spaces provided.
- Write your Centre Number, Candidate Number and Name in the spaces at the top of this page.
- Write in dark blue or black pen.
- · You may use a soft pencil for any diagrams, graphs or rough working.
- · Do not use correction fluid.
- You may use a non-programmable calculator.
- Do not write in the margin For Examiner's Use.
- Answer all questions.
- The number of marks is given in brackets [] at the end of each question or part question.
- You will lose marks if you do not show your working or if you do not use appropriate units.
- Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall $g = 10 \text{ m/s}^2$).
- The Periodic Table is printed on page 17.

For Exam	niner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
Total	
Marker	

Marker	
Checker	

This document consists of **17** printed pages and **3** blank pages.

Republic of Namibia

MINISTRY OF EDUCATION, ARTS AND CULTURE

[1]

[1]

[1]

1 Fig. 1.1 shows the electronic structures of substances X, Y and Z.

Fig. 1.1

(a) Write down

(i)	the na	ame of	element	Y
-----	--------	--------	---------	---

.....

(ii) the formula of ion **Z**.

.....[1]

(b) Atom **X** forms only covalent compounds when it is combined with other elements. Atom **Y** can form ionic compounds.

State the difference between the covalent and ionic compounds, in terms of the

(i) melting point.

.....[1]

(ii) electric conductivity.

(c) Sand, a macromolecule, is formed when atom **X** and atom **Y** are reacted.

Fig. 1.2 shows the structure of sand.

Fig. 1. 2

Give the chemical name of sand.

(d) Diamond is another macromolecule. Fig. 1.3 shows the structure of diamond.

diamond

Fig. 1.3

(i)	State one similarity and one difference between the structure of sand and diamond.	
	Similarity	
	Difference	
		[2]
(ii)	State one reason why diamond does not conduct electricity.	
		[1]
		[8]

b)	Fig. 2.1 shows a gate of a farm.
	Wall
	hínges Fig. 2.1
	A force of 100N is applied to the gate at a distance <i>d</i> from the hinges.
	This force produces a moment of 250 Nm about the hinges.
	Calculate the distance <i>d</i> .
	<i>d</i> =unit
(c)	d =
	State how the moment of the force changes when the force applied in (b) is
	State how the moment of the force changes when the force applied in (b) is reduced by half and the distance kept the same.
	State how the moment of the force changes when the force applied in (b) is reduced by half and the distance kept the same.
	State how the moment of the force changes when the force applied in (b) is reduced by half and the distance kept the same.

3	In an experiment, aqueous lead nitrate reacts with aqueous potassium iodide to form a soluble and an insoluble salt.					
	The	equ	ation for the reaction is shown.			
			$Pb(NO_3)_2 + 2KI \rightarrow$	PbI ₂ + 2KNO ₃		
	(a)	Stat	e which salt formed is soluble.			
					[1]	
	(b)	Des	cribe how an insoluble salt can be	separated from a mixture.		
					[3]	
	(c)		olume of 1.66 dm ³ of potassium iod ted in the experiment.	ide with a concentration of 10g/dm ³		
			eulate			
		(i)	the mass of potassium iodide read	cted.		
				Mass	[0]	
		(ii)	the number of moles of potassium	Mass g	[2]	
		(11)	the number of moles of potassium	riodide reacted.		
				Number of moles	[0]	
		(iii)		Number of molesmol in the experiment. Show your working.	[2]	
		(111)	the mass of lead lodide produced	in the experiment. Show your working.		
				Mass g	[2]	

[10]

4 Fig. 4.1 shows a solar geyser system for a house.

(a) State the main method by which heat energy is transferred from the sun to the solar collector.

		[1]
(b)	Name and explain the process of heat transfer through the water inside the tank.	
	Name	
	Explanation	
		[3]
(c)	The inside part of the geyser is painted silver.	
	State with a reason the advantage of painting the geyser silver.	
	Advantage	
	Reason	
		[2]

(d) The geyser is fitted with a thermostat that ensures that the hot water in the house is kept at the required temperature.

Device **P**, shown in Fig. 4.2, is the main part of the thermostat.

	3	
(i)	Fig. 4.2 State the name of the device P.	
(ii)	Explain why device P bends when it gets hot.	[1]
		[2] [9]

[6]

5	When fuels burn, heat energy is produced.	Natural gas is a common fuel, and
	methane, CH₄, is its main constituent.	

(a)) Name any other fuel.				
(b)	The (i)	burning of methane, CH ₄ , is an exothermic reaction. Describe the meaning of <i>exothermic reaction</i> .	[1]		
	(ii)	Explain why bond breaking is described as endothermic.	[1]		
(c)	The	chemical reaction showing the burning of methane is a redox reaction. State, giving a reason, which substance is oxidised. Substance	[1]		
	(ii)	Reason Identify the oxidising agent.	[2]		
			L,		

6 Fig. 6.1 shows wave fronts in a ripple tank.

Fig. 6.1

a)	(i) (ii)	Complete Fig. 6.1 to show the water waves in the shallow water region. State the property of waves that this experiment demonstrates.	[2]
			[1]
	(iii)	Describe what happens to the water waves as they re-enter the deep water from the shallow water.	
			[2]
b)	The	wave fronts are 3cm apart.	
	The	frequency of the wave is 0.25Hz.	

Calculate the average speed at which the waves are travelling. State the unit.

Speedunit	[3]
-----------	-----

[8]

7

	Ca element X Al Zn Fe H Cu least reactive
lder	Fig. 7.1 ntify element X.
Out	en steam is passed over a red-hot iron wool, hydrogen gas is produced line the chemical test for hydrogen gas.
Res	ult
) (1)	Name the process by which aluminium is extracted from its ore.
(ii)	Explain why this process is used.
	Explain why this process is used. is used to protect steel from corrosion.
Zino	is used to protect steel from corrosion.
Zino	is used to protect steel from corrosion. Name the process of coating steel with zinc.

8 (a) Fig. 8.1 shows the instrument used to detect electrostatic charges.

Fig. 8.1

	(i)	State the name of the instrument shown in Fig. 8.1.	
	(ii)	The positively charged rod is touched onto the metal cap and removed. On Fig. 8.1 draw the distribution of charges on the metal stem and gold leaf.	[1] [1]
(b)		culate the amount of charge flowing through a conductor to produce A in the time of 45s. Show your working and state the unit.	
		Charge unitunit	[3]
(c)	Stati	ic electricity can be dangerous, such as in lightning.	
	Expl	ain the phenomenon of lightning.	

[2]

[3]

9 Organic chemistry is a branch of chemistry that deals with carbon containing compounds.

Fig. 9.1 show the structures of different organic compounds.

Fig. 9.1

(a)	(i)	Name compound C .	[1
	(ii)	Describe a test to distinguish between compound ${\bf A}$ and compound ${\bf B}.$	

Test:	 	
Results:	 	

(b) Fig. 9.2 shows the structure of ethyl ethanoate.

Fig. 9.2

	1 ig. 5.2	
(i)	Describe how ethyl ethanoate is formed.	
		[1]
/ii\	State the functional group to which ethyl ethanoate belongs.	
(")	otate the functional group to which ethyl ethanoate belongs.	
		[1]
(iii)	State two uses of ethyl ethanoate.	
(,	- tank and a second and grant and a second a	
	1	
	2	[2]
	2	[ک]
		[8]

10 Transformers are devices that step up and step down the voltage during electrical transmission.

Fig. 10.1 shows a transformer.

		Fig. 10.1	
(a)	(i)	Describe the features of the transformer in Fig. 10.1 that show that it is a step-up transformer.	
			[1]
	(ii)	The efficiency of the transformer in Fig. 10.1 is 100%.	L *.
		State what is meant by the efficiency of the transformer is 100%.	
			[1]
	(iii)	Use the information given on the transformer in Fig. 10.1 to calculate the voltage across the secondary coil.	
		VoltageV	[2
(b)	The	current through the secondary coil is 0.75A.	
	Cald	culate the current through the primary coil. Show your working.	

Current......A [3]

[7]

11 Fig. 11.1 shows a water purification system.

(a)	One	Fig. 11.1 of the major steps involved is chlorination, where chlorine is added. Explain why chlorine is added.	
	(ii)	After chlorination, a little sodium hydroxide is added. Explain the importance of adding sodium hydroxide.	[1]
			[2]
	(iii)	Apart from chlorination, give another major process involved in water purification.	
			[1]
(b)	Wat	er obtained at the end of the purification process is not pure but it is clean	
	Des	cribe the physical test of pure water.	
	Test		
	Res	ult	
			[2]
(c)	Nan	ne and explain the process that can be used to purify water in the laborato	ry.
	Prod	cess	
	Expl	anation	
			[2]
			[8]

(D)		12.1 shows an incomplete p gnetic field.	ath	of	β-μ	oar	ticl	es	as	s t	he	y a	app	roach	а
		container with										gne into		e papei	
	a ra	dioactive source	Х		Y		Х		Х		1	/	Х		
			^	Х	^	Х				Х	^	Х		Х	
			Χ		Χ								Χ		
	<u></u>	————	X	Χ	Х	Χ				Χ			Х	X	
		O no article a	Х	Χ	Х	Χ		Χ		Χ			Х	X	
		β-particles Fig	. 12.	1											
		Fig. 12.1 complete the path of	ne β	-pa	rtic	cles	a	s tl	hey	/ tr	ave	el t	hrc	ough t	he
(c)	When a polonium-210 nucleus spontaneously emits an alpha particle, it forms a new substance.														
	(i)	Complete the equation.													
		Polonium-201 nucleus → alph	na na	arti	റില	-	-							nu	cleus
		Folorilatti-201 flucieus → alpi	ia po	A1 (1)	OIC		• • • •							IIU	
	(ii)	A sample contains 600 µg (mic													
	(ii)	·	rogr ope	am rer	ns) nai	of a	a r g i	ad n t	ioa he	cti [,] sa	ve mp	isc	otop	oe.	me
	(ii)	A sample contains 600 µg (mic	rogr ope	am rer	ns) nai	of a	a r g i	ad n t	ioa he	cti [,] sa	ve mp	isc	otop	oe.	me
	(ii)	A sample contains 600 µg (mic	crogr ope ed.	ram rer Sho	ns) nai	of a	a r g i ur	ad n t	ioa he rki	cti [,] sa ng	we mp	isc	aft	oe. er a ti	
		A sample contains 600 µg (mice Calculate the mass of this isot equal to 4 half-lives has elapsed	crogr ope ed. S	am rer Sho	ns) mai ow	of a	a r	ad n t wc	ioa he rki	cti ⁿ sa ng	we mp	isc ole	aft	oe. er a ti	I
(d)	Des	A sample contains 600 µg (mic	crogr ope ed. S	am rer Sho	ns) mai ow	of a	a r	ad n t wc	ioa he rki	cti ⁿ sa ng	we mp	isc ole	aft	oe. er a ti	I
(d)	Des	A sample contains 600 µg (mice Calculate the mass of this isot equal to 4 half-lives has elapsed cribe one precaution that should be contained as a sample	crogr ope ed. s	ram rer Sho Mas be	nai ow ss. ta	of a	ar gi ur	ad n t wc	ioa he rki 	ctiv sa ng	we mp 	isc ole	aft.	oe. er a ti μο dioact	I

3			in is one of the diggest problems in the world today. The the term <i>pollution.</i>	
				F41
	(b)	Air	pollution is one type of pollution due to fast growing number of industries ne world.	[1]
		(i)	Name one pollutant gas from the industries.	
		(ii)	Describe the effect of your chosen gas on the environment.	[1]
		(,	Boothbo the enest of your enestingus on the environment.	
				[2]
	(c)) (i)	Nitrogen, phosphorus and potassium are major constituents of chemical fertilisers.	<u>,-,</u>
			Give the importance of each element in the fertiliser.	
			Nitrogen	
			Phosphorus	
			Potassium	
		(ii)	Fertiliser is another common pollutant of soil.	[3]
		(,	One way to minimise the effect of fertiliser on the environment is to use organic fertilisers.	
			Give one advantage of using organic fertilisers.	
		(iii)	Discuss the dangers of over use of fertilisers with reference to water resources.	[1]
				[2]

			-				_	_		۶	m n								
		0	4 He Helium	20 Ne Neon	40 Ar Argon 18	84 Kry Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103								
								III		19 F Fluorine	35,5 C/ Chlorine	80 Br Bromine 35	127 J Iodine 53	At Astatine 85		173 Yb Ytterbium 70	No Nobelium 102		
		5	>	5	5	5	7	I	N	IN		16 O Oxygen 8	32 S Sulfur 16	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
			^		14 N Nitrogen 7	31 P Phosphorus 15	75 As Arsenic 33	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100							
		N		12 C Carbon 6	28 Si Silicon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	Es Einsteinium 99								
		=		11 B Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T, Thallium 81		162 Dy Dysprosium 66	Cf Californium 98								
						65 Zn Zinc 30	112 Cd Cadmium 48	Hg Mercury 80		159 Tb Terbium 65	Bk Berkelium 97								
nents						64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium 96								
DATA SHEET The Periodic Table of the Elements	Group					59 Ni Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95								
DATA ne Periodic Tal	9					59 Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77		150 Sm Samarium 62	Pu Plutonium 94								
=			1 H Hydrogen 1			56 Fe Iron 26	101 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Np Neptunium 93								
						55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92								
						52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91								
								51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium 90						
						48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72		1	a = relative atomic mass X = atomic symbol b = proton (atomic) number								
						45 Sc Scandium 21	89 Y	139 La Lanthanum 57	Actinium 89 †	S (a = relative atomic mass X = atomic symbol b = proton (atomic) numbe								
		=		9 Be Beryllium 4	24 Mg Magnesium 12	40 Ca Calcium 20	88 Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88	*58 - 71 Lanthanoid series †90 - 103 Actinoid series	ж Х								
		_		7 Li Lithium 3	23 Na Sodium 11	39 K Potassium 19	85 Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58 - 71 L ₆ †90 - 103 <i>t</i>	Key								

The volume of one mole of any gas is 24 dm $^{\circ}$ at room temperature and pressure (r.t.p.).

BLANK PAGE

BLANK PAGE

BLANK PAGE