| Centre Number | Candidate Number | Candidate Name | |---------------|------------------|----------------| | | | | | | | | #### NAMIBIA SENIOR SECONDARY CERTIFICATE #### PHYSICAL SCIENCE ORDINARY LEVEL 4323/2 PAPER 2 2 hours Marks 100 **2017** Additional Materials: Non-programmable calculator Ruler #### INSTRUCTIONS AND INFORMATION TO CANDIDATES - Candidates answer on the Question Paper in the spaces provided. - Write your Centre Number, Candidate Number and Name in the spaces at the top of this page. - Write in dark blue or black pen. - · You may use a soft pencil for any diagrams, graphs or rough working. - · Do not use correction fluid. - You may use a non-programmable calculator. - Do not write in the margin For Examiner's Use. - Answer all questions. - The number of marks is given in brackets [] at the end of each question or part question. - You will lose marks if you do not show your working or if you do not use appropriate units. - Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall $g = 10 \text{ m/s}^2$). - The Periodic Table is printed on page 17. | For Exam | niner's Use | |----------|-------------| | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | 9 | | | 10 | | | 11 | | | 12 | | | 13 | | | Total | | | Marker | | | Marker | | |---------|--| | Checker | | This document consists of **17** printed pages and **3** blank pages. Republic of Namibia MINISTRY OF EDUCATION, ARTS AND CULTURE [1] [1] [1] 1 Fig. 1.1 shows the electronic structures of substances X, Y and Z. Fig. 1.1 (a) Write down | (i) | the na | ame of | element | Y | |-----|--------|--------|---------|---| |-----|--------|--------|---------|---| (ii) the formula of ion **Z**.[1] **(b)** Atom **X** forms only covalent compounds when it is combined with other elements. Atom **Y** can form ionic compounds. State the difference between the covalent and ionic compounds, in terms of the (i) melting point.[1] (ii) electric conductivity. (c) Sand, a macromolecule, is formed when atom **X** and atom **Y** are reacted. Fig. 1.2 shows the structure of sand. Fig. 1. 2 Give the chemical name of sand. (d) Diamond is another macromolecule. Fig. 1.3 shows the structure of diamond. diamond Fig. 1.3 | (i) | State one similarity and one difference between the structure of sand and diamond. | | |------|--|-----| | | Similarity | | | | | | | | Difference | | | | | [2] | | (ii) | State one reason why diamond does not conduct electricity. | | | | | | | | | [1] | | | | [8] | | b) | Fig. 2.1 shows a gate of a farm. | |-----|---| | | Wall | | | hínges
Fig. 2.1 | | | A force of 100N is applied to the gate at a distance <i>d</i> from the hinges. | | | This force produces a moment of 250 Nm about the hinges. | | | Calculate the distance <i>d</i> . | | | | | | | | | <i>d</i> =unit | | (c) | d = | | | State how the moment of the force changes when the force applied in (b) is | | | State how the moment of the force changes when the force applied in (b) is reduced by half and the distance kept the same. | | | State how the moment of the force changes when the force applied in (b) is reduced by half and the distance kept the same. | | | State how the moment of the force changes when the force applied in (b) is reduced by half and the distance kept the same. | | 3 | In an experiment, aqueous lead nitrate reacts with aqueous potassium iodide to form a soluble and an insoluble salt. | | | | | | |---|--|-------|--|--|-----|--| | | The | equ | ation for the reaction is shown. | | | | | | | | $Pb(NO_3)_2 + 2KI \rightarrow$ | PbI ₂ + 2KNO ₃ | | | | | (a) | Stat | e which salt formed is soluble. | | | | | | | | | | [1] | | | | (b) | Des | cribe how an insoluble salt can be | separated from a mixture. | [3] | | | | (c) | | olume of 1.66 dm ³ of potassium iod
ted in the experiment. | ide with a concentration of 10g/dm ³ | | | | | | | eulate | | | | | | | (i) | the mass of potassium iodide read | cted. | | | | | | | | | | | | | | | | Mass | [0] | | | | | (ii) | the number of moles of potassium | Mass g | [2] | | | | | (11) | the number of moles of potassium | riodide reacted. | Number of moles | [0] | | | | | (iii) | | Number of molesmol in the experiment. Show your working. | [2] | | | | | (111) | the mass of lead lodide produced | in the experiment. Show your working. | Mass g | [2] | | [10] 4 Fig. 4.1 shows a solar geyser system for a house. (a) State the main method by which heat energy is transferred from the sun to the solar collector. | | | [1] | |-----|--|-----| | (b) | Name and explain the process of heat transfer through the water inside the tank. | | | | Name | | | | Explanation | | | | | | | | | | | | | | | | | [3] | | (c) | The inside part of the geyser is painted silver. | | | | State with a reason the advantage of painting the geyser silver. | | | | Advantage | | | | | | | | Reason | | | | | [2] | (d) The geyser is fitted with a thermostat that ensures that the hot water in the house is kept at the required temperature. Device **P**, shown in Fig. 4.2, is the main part of the thermostat. | | 3 | | |------|---|-------------------| | (i) | Fig. 4.2 State the name of the device P. | | | (ii) | Explain why device P bends when it gets hot. | [1] | | | | | | | | | | | | [2]
[9] | [6] | 5 | When fuels burn, heat energy is produced. | Natural gas is a common fuel, and | |---|---|-----------------------------------| | | methane, CH₄, is its main constituent. | | | (a) |) Name any other fuel. | | | | | |-----|------------------------|--|-----|--|--| | (b) | The (i) | burning of methane, CH ₄ , is an exothermic reaction. Describe the meaning of <i>exothermic reaction</i> . | [1] | | | | | (ii) | Explain why bond breaking is described as endothermic. | [1] | | | | (c) | The | chemical reaction showing the burning of methane is a redox reaction. State, giving a reason, which substance is oxidised. Substance | [1] | | | | | (ii) | Reason Identify the oxidising agent. | [2] | | | | | | | L, | | | **6** Fig. 6.1 shows wave fronts in a ripple tank. Fig. 6.1 | a) | (i)
(ii) | Complete Fig. 6.1 to show the water waves in the shallow water region. State the property of waves that this experiment demonstrates. | [2] | |----|-------------|--|-----| | | | | [1] | | | (iii) | Describe what happens to the water waves as they re-enter the deep water from the shallow water. | [2] | | b) | The | wave fronts are 3cm apart. | | | | The | frequency of the wave is 0.25Hz. | | Calculate the average speed at which the waves are travelling. State the unit. | Speedunit | [3] | |-----------|-----| |-----------|-----| [8] 7 | | Ca element X Al Zn Fe H Cu least reactive | |-------|--| | lder | Fig. 7.1 ntify element X. | | Out | en steam is passed over a red-hot iron wool, hydrogen gas is produced line the chemical test for hydrogen gas. | | Res | ult | |) (1) | Name the process by which aluminium is extracted from its ore. | | (ii) | Explain why this process is used. | | | Explain why this process is used. is used to protect steel from corrosion. | | | | | Zino | is used to protect steel from corrosion. | | Zino | is used to protect steel from corrosion. Name the process of coating steel with zinc. | 8 (a) Fig. 8.1 shows the instrument used to detect electrostatic charges. Fig. 8.1 | | (i) | State the name of the instrument shown in Fig. 8.1. | | |-----|-------|--|------------| | | (ii) | The positively charged rod is touched onto the metal cap and removed. On Fig. 8.1 draw the distribution of charges on the metal stem and gold leaf. | [1]
[1] | | (b) | | culate the amount of charge flowing through a conductor to produce A in the time of 45s. Show your working and state the unit. | | | | | | | | | | Charge unitunit | [3] | | (c) | Stati | ic electricity can be dangerous, such as in lightning. | | | | Expl | ain the phenomenon of lightning. | | | | | | | | | | | | | | | | | [2] [3] **9** Organic chemistry is a branch of chemistry that deals with carbon containing compounds. Fig. 9.1 show the structures of different organic compounds. Fig. 9.1 | (a) | (i) | Name compound C . | [1 | |-----|------|---|----| | | (ii) | Describe a test to distinguish between compound ${\bf A}$ and compound ${\bf B}.$ | | | Test: |
 | | |----------|------|--| | Results: |
 | | | | | | | |
 | | | | | | | | | | | | | | (b) Fig. 9.2 shows the structure of ethyl ethanoate. Fig. 9.2 | | 1 ig. 5.2 | | |-------|--|-----| | (i) | Describe how ethyl ethanoate is formed. | | | | | | | | | | | | | [1] | | /ii\ | State the functional group to which ethyl ethanoate belongs. | | | (") | otate the functional group to which ethyl ethanoate belongs. | | | | | [1] | | (iii) | State two uses of ethyl ethanoate. | | | (, | - tank and a second and grant and a second a | | | | 1 | | | | 2 | [2] | | | 2 | [ک] | | | | [8] | **10** Transformers are devices that step up and step down the voltage during electrical transmission. Fig. 10.1 shows a transformer. | | | Fig. 10.1 | | |-----|-------|---|------| | (a) | (i) | Describe the features of the transformer in Fig. 10.1 that show that it is a step-up transformer. | | | | | | [1] | | | (ii) | The efficiency of the transformer in Fig. 10.1 is 100%. | L *. | | | | State what is meant by the efficiency of the transformer is 100%. | | | | | | | | | | | [1] | | | (iii) | Use the information given on the transformer in Fig. 10.1 to calculate the voltage across the secondary coil. | VoltageV | [2 | | (b) | The | current through the secondary coil is 0.75A. | | | | Cald | culate the current through the primary coil. Show your working. | | Current......A [3] [7] **11** Fig. 11.1 shows a water purification system. | (a) | One | Fig. 11.1 of the major steps involved is chlorination, where chlorine is added. Explain why chlorine is added. | | |-----|-------|--|-----| | | (ii) | After chlorination, a little sodium hydroxide is added. Explain the importance of adding sodium hydroxide. | [1] | | | | | | | | | | [2] | | | (iii) | Apart from chlorination, give another major process involved in water purification. | | | | | | [1] | | (b) | Wat | er obtained at the end of the purification process is not pure but it is clean | | | | Des | cribe the physical test of pure water. | | | | Test | | | | | Res | ult | | | | | | [2] | | (c) | Nan | ne and explain the process that can be used to purify water in the laborato | ry. | | | Prod | cess | | | | Expl | anation | | | | | | [2] | | | | | [8] | | (D) | | 12.1 shows an incomplete p
gnetic field. | ath | of | β-μ | oar | ticl | es | as | s t | he | y a | app | roach | а | |-----|--|--|-----------------------|--------------------------------|------------------------|------|------------------|-----------------|----------------------|------------------------------|--------------|-------------|------|--------------------------------|-------| | | | container with | | | | | | | | | | gne
into | | e papei | | | | a ra | dioactive source | Х | | Y | | Х | | Х | | 1 | / | Х | | | | | | | ^ | Х | ^ | Х | | | | Х | ^ | Х | | Х | | | | | | Χ | | Χ | | | | | | | | Χ | | | | | <u></u> | ———— | X | Χ | Х | Χ | | | | Χ | | | Х | X | | | | | O no article a | Х | Χ | Х | Χ | | Χ | | Χ | | | Х | X | | | | | β-particles
Fig | . 12. | 1 | Fig. 12.1 complete the path of | ne β | -pa | rtic | cles | a | s tl | hey | / tr | ave | el t | hrc | ough t | he | | (c) | When a polonium-210 nucleus spontaneously emits an alpha particle, it forms a new substance. | | | | | | | | | | | | | | | | | (i) | Complete the equation. | | | | | | | | | | | | | | | | | Polonium-201 nucleus → alph | na na | arti | റില | - | - | | | | | | | nu | cleus | | | | Folorilatti-201 flucieus → alpi | ia po | A1 (1) | OIC | | • • • • | | | | | | | IIU | | | | (ii) | A sample contains 600 µg (mic | | | | | | | | | | | | | | | | (ii) | · | rogr
ope | am
rer | ns)
nai | of a | a r
g i | ad
n t | ioa
he | cti [,]
sa | ve
mp | isc | otop | oe. | me | | | (ii) | A sample contains 600 µg (mic | rogr
ope | am
rer | ns)
nai | of a | a r
g i | ad
n t | ioa
he | cti [,]
sa | ve
mp | isc | otop | oe. | me | | | (ii) | A sample contains 600 µg (mic | crogr
ope
ed. | ram
rer
Sho | ns)
nai | of a | a r
g i
ur | ad
n t | ioa
he
rki | cti [,]
sa
ng | we
mp | isc | aft | oe.
er a ti | | | | | A sample contains 600 µg (mice Calculate the mass of this isot equal to 4 half-lives has elapsed | crogr
ope
ed. S | am
rer
Sho | ns)
mai
ow | of a | a r | ad
n t
wc | ioa
he
rki | cti ⁿ
sa
ng | we
mp | isc
ole | aft | oe.
er a ti | I | | (d) | Des | A sample contains 600 µg (mic | crogr
ope
ed. S | am
rer
Sho | ns)
mai
ow | of a | a r | ad
n t
wc | ioa
he
rki | cti ⁿ
sa
ng | we
mp | isc
ole | aft | oe.
er a ti | I | | (d) | Des | A sample contains 600 µg (mice Calculate the mass of this isot equal to 4 half-lives has elapsed cribe one precaution that should be contained as a sample | crogr
ope
ed. s | ram
rer
Sho
Mas
be | nai
ow
ss.
ta | of a | ar
gi
ur | ad
n t
wc | ioa
he
rki
 | ctiv
sa
ng | we
mp
 | isc
ole | aft. | oe.
er a ti
μο
dioact | I | | 3 | | | in is one of the diggest problems in the world today. The the term <i>pollution.</i> | | |---|-----|-------|--|------------| | | | | | F41 | | | (b) | Air | pollution is one type of pollution due to fast growing number of industries ne world. | [1] | | | | (i) | Name one pollutant gas from the industries. | | | | | (ii) | Describe the effect of your chosen gas on the environment. | [1] | | | | (, | Boothbo the enest of your enestingus on the environment. | | | | | | | [2] | | | (c) |) (i) | Nitrogen, phosphorus and potassium are major constituents of chemical fertilisers. | <u>,-,</u> | | | | | Give the importance of each element in the fertiliser. | | | | | | Nitrogen | | | | | | | | | | | | Phosphorus | | | | | | Potassium | | | | | (ii) | Fertiliser is another common pollutant of soil. | [3] | | | | (, | One way to minimise the effect of fertiliser on the environment is to use organic fertilisers. | | | | | | Give one advantage of using organic fertilisers. | | | | | | | | | | | (iii) | Discuss the dangers of over use of fertilisers with reference to water resources. | [1] | | | | | | | | | | | | | | | | | | [2] | | | | | | | | | | | - | | | | _ | _ | | ۶ | m
n | | | | | | | | | |--|-------|---|--------------------------------|----------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|---|--|----------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|------------------------------|-----------------------------------|---------------------------------| | | | 0 | 4 He Helium | 20
Ne
Neon | 40
Ar
Argon
18 | 84
Kry
Krypton
36 | 131
Xe
Xenon
54 | Radon 86 | | 175
Lu
Lutetium
71 | Lr
Lawrencium
103 | | | | | | | | | | | | | | | | | | III | | 19
F
Fluorine | 35,5 C/ Chlorine | 80
Br
Bromine
35 | 127 J Iodine 53 | At
Astatine
85 | | 173
Yb
Ytterbium
70 | No
Nobelium
102 | | | | | | 5 | > | 5 | 5 | 5 | 7 | I | N | IN | | 16
O
Oxygen
8 | 32
S
Sulfur
16 | 79
Se
Selenium
34 | 128
Te
Tellurium
52 | Po
Polonium
84 | | 169
Tm
Thulium
69 | Md
Mendelevium
101 | | | | | ^ | | 14
N
Nitrogen
7 | 31
P
Phosphorus
15 | 75
As
Arsenic
33 | Sb
Antimony
51 | 209
Bi
Bismuth
83 | | 167
Er
Erbium
68 | Fm
Fermium
100 | | | | | | | | | | | N | | 12
C
Carbon
6 | 28
Si
Silicon
14 | 73
Ge
Germanium
32 | 119
Sn
Tin | 207
Pb
Lead
82 | | 165
Ho
Holmium
67 | Es
Einsteinium
99 | | | | | | | | | | | | = | | 11
B
Boron
5 | 27
A1
Aluminium
13 | 70
Ga
Gallium
31 | 115
In
Indium
49 | 204
T,
Thallium
81 | | 162
Dy
Dysprosium
66 | Cf
Californium
98 | | | | | | | | | | | | | | | | 65 Zn Zinc 30 | 112
Cd
Cadmium
48 | Hg
Mercury
80 | | 159
Tb
Terbium
65 | Bk
Berkelium
97 | | | | | | | | | | nents | | | | | | 64
Copper
29 | 108
Ag
Silver
47 | 197
Au
Gold | | 157
Gd
Gadolinium
64 | Cm
Curium
96 | | | | | | | | | | DATA SHEET
The Periodic Table of the Elements | Group | | | | | 59
Ni
Nickel | 106
Pd
Palladium
46 | 195
Pt
Platinum
78 | | 152
Eu
Europium
63 | Am
Americium
95 | | | | | | | | | | DATA
ne Periodic Tal | 9 | | | | | 59
Cobalt
27 | 103
Rh
Rhodium
45 | 192
Ir
Iridium
77 | | 150
Sm
Samarium
62 | Pu
Plutonium
94 | | | | | | | | | | = | | | 1
H
Hydrogen
1 | | | 56
Fe
Iron
26 | 101
Ru
Ruthenium
44 | 190
Os
Osmium
76 | | Pm
Promethium
61 | Np
Neptunium
93 | | | | | | | | | | | | | | | | 55
Mn
Manganese
25 | Tc
Technetium
43 | 186
Re
Rhenium
75 | | Neodymium 60 | 238
U
Uranium
92 | | | | | | | | | | | | | | | | 52
Cr
Chromium
24 | 96
Mo
Molybdenum
42 | 184
W
Tungsten
74 | | 141
Pr
Praseodymium
59 | Pa
Protactinium
91 | | | | | | | | | | | | | | | | | | 51
V
Vanadium
23 | 93
Nb
Niobium
41 | 181
Ta
Tantalum
73 | | 140
Ce
Cerium
58 | 232
Th
Thorium
90 | | | | | | | | | | | | | | 48 Ti Titanium 22 | 91
Zr
Zirconium
40 | 178
Hf
Hafnium
72 | | 1 | a = relative atomic mass X = atomic symbol b = proton (atomic) number | | | | | | | | | | | | | | | | 45
Sc
Scandium
21 | 89 Y | 139
La
Lanthanum
57 | Actinium 89 † | S (| a = relative atomic mass X = atomic symbol b = proton (atomic) numbe | | | | | | | | | | | | = | | 9
Be
Beryllium
4 | 24
Mg
Magnesium
12 | 40
Ca
Calcium
20 | 88
Sr
Strontium
38 | 137
Ba
Barium
56 | 226
Ra
Radium
88 | *58 - 71 Lanthanoid series
†90 - 103 Actinoid series | ж Х | | | | | | | | | | | | _ | | 7
Li
Lithium
3 | 23
Na
Sodium
11 | 39 K
Potassium
19 | 85
Rb
Rubidium
37 | 133
Cs
Caesium
55 | Fr
Francium
87 | *58 - 71 L ₆
†90 - 103 <i>t</i> | Key | | | | | | | | | The volume of one mole of any gas is 24 dm $^{\circ}$ at room temperature and pressure (r.t.p.). # **BLANK PAGE** # **BLANK PAGE** # **BLANK PAGE**