Centre Number	Candidate Number	Candidate Name

NAMIBIA SENIOR SECONDARY CERTIFICATE

PHYSICAL SCIENCE ORDINARY LEVEL

4323/3

PAPER 3 1 hour 30 minutes

Marks 60 **2017**

Additional Materials: Non-programmable calculator

Ruler

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- Candidates answer on the Question Paper in the spaces provided.
- Write your Centre Number, Candidate Number and Name in the spaces at the top of this page.
- Write in dark blue or black pen.
- You may use a soft pencil for any rough working, diagrams or graphs.
- Do not use correction fluid.
- Do not write in the margin For Examiner's Use.
- Answer all questions.
- The number of marks is given in brackets [] at the end of each question or part question.
- You may use a non-programmable calculator.
- Take the weight of 1 kg to be 10 N (i.e acceleration of free fall $g = 10 \text{ m/s}^2$).
- The Periodic Table is printed on page 15.
- Chemistry Practical Notes are printed on page 16.

For Exam	For Examiner's Use		
1			
2			
3			
4			
5			
6			
TOTAL			

Marker	
Checker	

This document consists of 15 printed pages and 1 blank page.

Republic of Namibia
MINISTRY OF EDUCATION, ARTS AND CULTURE

1 In an experiment a Grade 12 student suspends a spring to which a weight hanger is attached as shown in Fig. 1.1.

For Examiner's Use

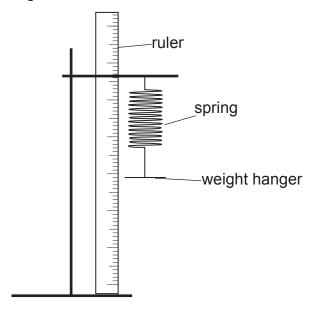


Fig. 1.1

The student uses the ruler to measure the length of the spring without any mass added (x_0) and found it to be 15 mm.

She then adds slotted masses onto the mass hanger and records the new length of the spring for each mass added.

Fig. 1.2. shows the spring when 20g and 50g masses are hanging from it.

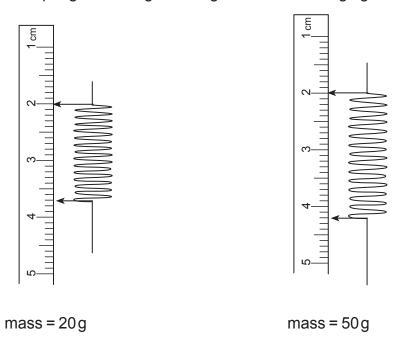


Fig. 1.2

(a) Read the spring lengths from Fig. 1.2 for the 20g mass and the 50g mass and record them in the table in Fig. 1.3.

[2]

[4]

mass added/g spring length (x ₀)/mm		new length (x)/mm	extension (x - x ₀)/mm
0 15		-	-
10	15	16	
20	15		
30	15	18	
40	15	19	
50	15		
60	15	26	
70	15	31	
80	15	36	

Fig. 1.3

- (b) Complete the table in Fig. 1.3 by determining the extension $(x x_0)$ of the spring for each mass added.
- (c) Use the information in Fig. 1.3 and the grid in Fig. 1.4 to draw the graph of extension (y-axis) versus mass (x-axis). Draw the line of best fit. [4]

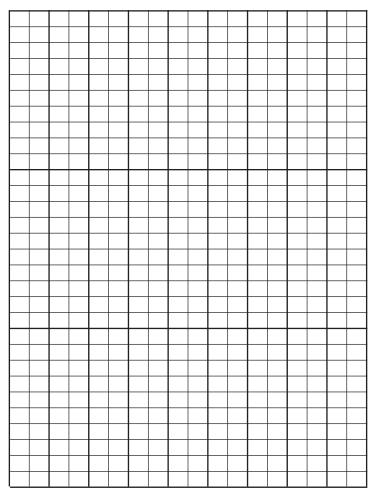


Fig. 1.4

(d) On your graph identify the limit of proportionality of the spring and label it P.

[1]

For Examiner's Use

	escribe a chemical test to distinguish between each of the following pairs of ubstances.						
Д	An example is given.						
Е	xample: oxygen and carbon dioxide						
Т	est glowing splint						
F	esult with oxygen relight the glowing splint						
	esult with carbon dioxide extinguish the glowing splint						
(6	a) Ammonia and chlorine						
	Test						
	Result with ammonia						
	Result with chlorine						
(1) Acidic solution and basic solution						
('	Test						
	Result with acidic solution						
(Result with basic solution[3						
,	Test						
	Result with ethene						
	Result with ethane						
	•						
	[9						

3 Grade 12 students are given the pieces of apparatus listed below.

ammeter electronic balance meterruler

50 cm³ beaker 50 cm³ measuring cylinder voltmeter stopwatch
tape measure clock spring balance
25 cm³ pipette

(a) Complete the table in Fig. 3.1 by inserting the name of one piece of apparatus from the list that is the most suitable for measuring each quantity described.

quantity to be measured	most suitable apparatus
25 cm³ of water	
a distance of about 50 m	
the mass of a coin	
the force required to lift a school book	
the potential difference across a cell	

Fig. 3.1

		[5]
(b)	Using some of the apparatus above, describe an experiment to determine the density of an irregular shaped stone.	
		[3]

4323/3/17

[Turn over

[8]

4 Peter investigates the speed of thermal decomposition of three unknown metal carbonates, **A**, **B** and **C**. Fig. 4.1 shows the apparatus he uses.

For Examiner's Use

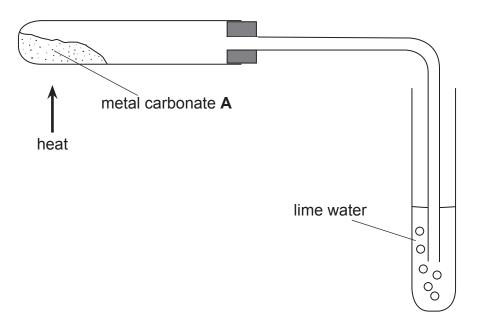


Fig. 4.1

- He places about 1 cm depth of metal carbonate **A** in the hard-glass test-tube.
- He heats it and at the same time starts a stop clock.
- When the limewater turns milky, he stops the clock and records the result in the table in Fig. 4.2.
- He also records any colour change of the metal carbonate A in the table in Fig. 4.2.
- He repeats the experiment using metal carbonates B and C.
- He makes a conclusion on ease of decomposition of the metal carbonates.

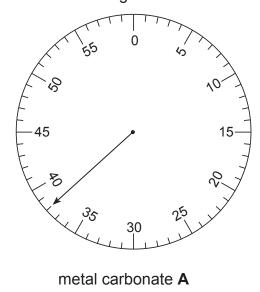

metal carbonate	time taken for lime water to turn milky/s	colour change	conclusion on ease of decomposition
Α		white to yellow when hot	fairly easy
В	never turned milky	remains white	
С		green to black	easy

Fig. 4.2

(a)	State the carbonate	_	on ease	of	decomposition	Peter	would	make for	metal	
										[1

For Examiner's Use

(b) Fig. 4.3 shows the stop clock readings obtained for metal carbonates **A** and **C**. The readings are the times taken for the limewater to turn milky.

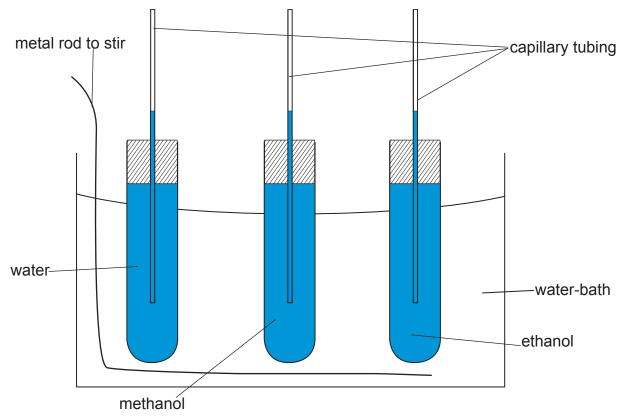
55 0 15 45 15 35 30 25

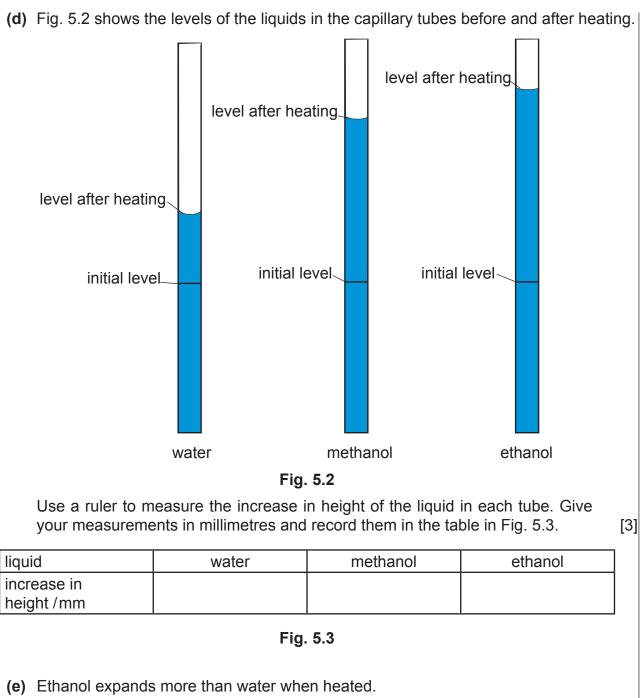
metal carbonate C

Fig. 4.3

	8		
(e)	Peter's teacher advised him not to include lead carbonate as part of his experime	nt.	For Examiner's Use
	With reference to health and safety, suggest one reason why Peter's teacher advised him not to include lead carbonate.		036
		[1]	
		[10]	

5 Johanna is conducting an experiment to demonstrate the expansion of liquids when heated. She is comparing the expansion of water, ethanol and methanol. The apparatus is shown in Fig. 5.1.




Fig. 5.1

- Each test-tube is filled with the same volume of liquid.
- Three drops of blue ink are added to each liquid.
- Capillary tubes are inserted so that there is no air in the tubes.
- The initial level of the liquid is marked.
- The water-bath is gently heated and carefully stirred.
- After a few minutes, the new levels of the liquids in the capillary tubes are marked.

(a)	Suggest the reason why drops of blue ink are added to each liquid.	[1]
(b)	Explain why the tubes are placed in the same, stirred water-bath.	ניו
		[2]
(c)	Johanna observed that the liquid levels in the capillary tubes dropped first before they started rising. Suggest an explanation for this observation.	
		[1]

For Examiner's Use

[11]

(e)	Ethanol expands more than water when heated.	
	Explain this difference with reference to the Kinetic Particle Theory.	
		[2]
(f)	Use the experimental observations to explain how the liquid-in-glass thermometer works.	
		[2]

BLANK PAGE

Question 6 is on page 12

6 Dilute hydrochloric acid was added to excess calcium carbonate in a flask as shown in Fig. 6.1.

For Examiner's Use

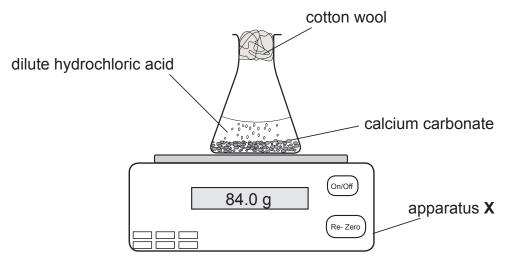


Fig. 6.1

(a) Name apparatus X.

.....[1]

(b) The flask was placed on apparatus **X**. The table in Fig. 6.2 shows the mass of the flask and contents recorded every minute during the experiment.

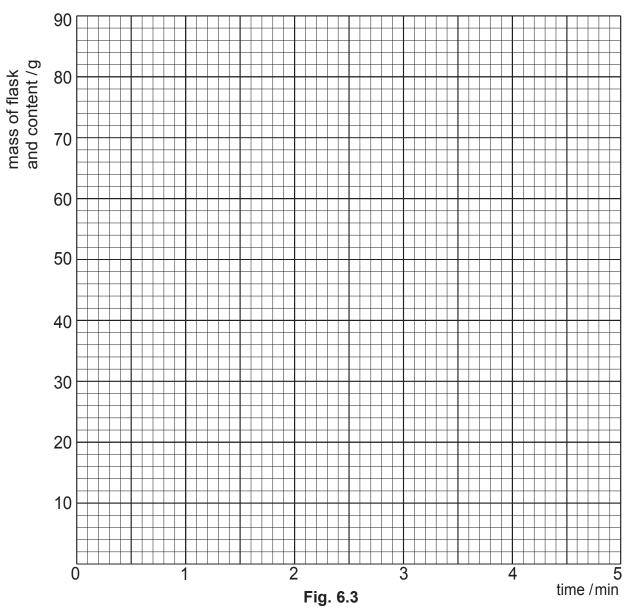

mass of flask and contents /g	84	78	75.6	74.5	74	74
time / min	0	1	2	3	4	5

Fig. 6.2

For Examiner's

Plot the results from the table in Fig. 6.2 on Fig. 6.3.

Draw a smooth line graph.

4	۱ ـ ۱) Use			. L	1_	£: ~
1		l lise	vour	orar	m	m	TINO
Л			v Oui	MI UL	/ I I	w	111114

(i) the mass of the flask and its contents after 1 minute 30 seconds. Show clearly on your graph how you worked out your answer.

.....[2]

(ii) the time the reaction finished.

.....[1]

(d) Explain why the mass of the flask and its contents decreases.

.....

[1]

[3]

	14		
(e)	A second experiment was carried out using hydrochloric acid at a higher temperature. The amounts and concentrations of all reactants remain the same.		For Examiner's Use
	On the grid sketch a curve to show the expected results for this experiment. Label this curve T.	[2]	
(f)	Suggest the reason for covering the flask with the cotton wool.		
		[4]	
		[1]	
		[11]	

		0	4 Helium 2	20 Ne Neon	40 Ar Argon	84 Krypton	36	131 Xe Xenon 54	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
		NII		19 F Fluorine	35,5 C/ Chlorine	80 Br	\neg	127 I lodine 53	At Astatine 85		73 Yb Ytterbium 70	Nobelium 102
		N		16 O Oxygen 8	32 S Sulfur 16	79 Se	34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
		۸		14 N Nitrogen 7	31 P Phosphorus 15	75 As Arsenic	33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
		ΛΙ		12 C Carbon 6	28 Si Silicon	73 Ge Germanium	32	Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	Es Einsteinium 99
				11 B Boron 5	27 A/ Aluminium 13	70 Ga	31	115 In Indium 49	204 T<i>I</i> Thallium 81		162 Dy Dysprosium 66	Cf Californium 98
						65 Zn Zing	30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	Bk Berkelium 97
nents						64 Conner	29	108 Ag Silver 47	197 Au Gold 79		157 Gd Gadolinium 64	Cm Curium 96
DATA SHEET The Periodic Table of the Elements	Group					50 Z	28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
DATA e Periodic Tak	ō					59 Cobalt	27	103 Rh Rhodium 45	192 r r Iridium 77		150 Sm Samarium 62	Pu Plutonium 94
<u></u>			1 H Hydrogen			56 Fe	26	101 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium 93
				•		55 Mn Manganese	25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium 92
						52 Cr Chromium	24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
						51 Vanadium	23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium 90
							22	91 Zr Zirconium 40	178 Hf Hafnium 72		ı	a = relative atomic mass X = atomic symbol b = proton (atomic) number
						Scandium	21	89 Y Yttrium 39	139 La Lanthanum 57 *	227 Ac Actinium 89 †	es S	a = relative atomic mass X = atomic symbol b = proton (atomic) numbe
		II		9 Be Beryllium 4	24 Mg Magnesium 12	Calcium	(1	88 Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88	*58 - 71 Lanthanoid series †90 - 103 Actinoid series	а Х
		_		7 Li Lithium 3	23 Na Sodium 11	39 K Potassium	19	85 Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58 - 71 La †90 - 103 Æ	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

CHEMISTRY PRACTICAL NOTES

Test for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (Cl ⁻)	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous lead (II) nitrate	yellow ppt.
nitrate (NO ₃)	add aqueous sodium hydroxide, then aluminium foil, warm carefully	ammonia produced
sulfate (SO ₄ ²⁻)	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (Al ³⁺)	white ppt., soluble in excess, giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ ⁺)	ammonia produced on warming	_
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt., or very slight white ppt.
copper (II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess, giving a dark blue solution
iron (II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron (III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess, giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Test for gases

gas	test and test result
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint