Rate of Reaction

Question Paper

Level	Pre U
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	Rate of Reaction- Gases and kinetics
Booklet	Question Paper

Time Allowed: 40 minutes

Score: /33

Percentage: /100

Grade Boundaries:

(b)	and four 'rea	i Fig. 2.1 shows the var il' gases at 273 K.	iation of pV with	h increasing pressure for an ideal	gas
	pV _	CO CH ₄		CO CH ₄ He ideal gas	
			Fig. 2.1		
		ne two properties of our that are shown in Fi		at explain the deviations from id	dea
			g. 2.1.		dea
	behavio 1 2	our that are shown in Fi	g. 2.1.		
	behavio 1 2	our that are shown in Fi	g. 2.1.		

(iii) Explain the positive deviation from ideal behaviour that is shown by all four real gases at high pressures.	(iii)
[2]	
(iv) Explain why the positive deviations at high pressures are in the order shown above, i.e. CO>CH ₄ >H ₂ >He.	(iv)
4 2	
[1]	
becomes greater. Explain why this is so.	
[2]	
[Total: 10]	

 2-bromobutane reacts with potassium hydroxide by either elimination or nucleoph depending on a combination of factors. 			butane reacts with potassium hydroxide by either elimination or nucleophilic substitution of on a combination of factors.
	(a)	Stat	e the conditions needed to bring about each of these reactions.
		(i)	elimination
		(ii)	nucleophilic substitution
			[3]
	(a)	but- be o	comobutane is a <i>chiral</i> molecule and, when it is prepared by the reaction between 1-ene and hydrogen bromide, a <i>racemate</i> is formed. The enantiomers in the <i>racemate</i> can converted to <i>diastereoisomers</i> by covalent derivatisation with suitable <i>chiral</i> reagents. Pure uples of each of the enantiomers can then be obtained by simple separation techniques as <i>diastereoisomers</i> have different physical and chemical properties.
		Give	e definitions of each of the words in italics.
		(i)	chiral
			[1]
		(ii)	racemate
		(:::\	
		(iii)	diastereoisomers
			[1]

(iv) Draw suitable diagrams of the two different enantiomers of 2-bromobutane.	
	[2]
(c) When R-(-)-2-bromobutane undergoes nucleophilic substitution with potassium hydroxic under appropriate conditions the reaction proceeds predominantly by the S _N 2 mechanis When the progress of the reaction is followed in a polarimeter the optical activity is seen change gradually from -23.1° via zero to +13.5°.	m.
(i) Draw a curly-arrow mechanism for the reaction that is taking place. Show the 3 structures of the reactant and product clearly.	-D
(ii) Give the systematic name of the organic product.	[4]
	[2]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

(d) The kinetics of the reaction of a different bromoalkane (RBr) with aqueous alkali were investigated at 323 K. The results are shown in Table 2.1.

Table 2.1

experiment	[RBr]/moldm ⁻³	[OH ⁻]/moldm ⁻³	initial rate/moldm ⁻³ s ⁻¹
1	0.05	0.10	4.0×10^{-4}
2	0.15	0.10	1.2 × 10 ⁻³
3	0.10	0.20	1.6 × 10 ⁻³

(i)	Deduce the order of reaction with respect to RBr and with respect to the hydroxide ion, OH ⁻ .
	Give reasons for each of your answers.
	[4]
(ii)	Write the rate equation for the reaction.
	[1]
(iii)	Calculate the value of the rate constant, k, at 323K and give its units.
	[3
(!- A	
(iv)	Draw the skeletal formula of RBr, which is an isomer of 2-bromobutane.