| Centre Number | Candidate Number | Candidate Name | |---------------|------------------|----------------| | | | | | | | | ### NAMIBIA SENIOR SECONDARY CERTIFICATE # CHEMISTRY ORDINARY LEVEL 6117/2 PAPER 2 Structured Questions 1 hour 30 minutes Marks 80 2022 Additional Materials: Non-programmable calculator Ruler #### INSTRUCTIONS AND INFORMATION TO CANDIDATES - Candidates answer on the Question Paper in the spaces provided. - Write your Centre Number, Candidate Number and Name in the spaces provided on top of this page. - Write in dark blue or black pen. - · You may use a soft pencil for any diagrams, graphs or rough working. - · Do not use correction fluid. - Do not write in the margin For Examiner's Use. - Answer all questions. - The number of marks is given in brackets [] at the end of each question or part question. - You will lose marks if you do not show your working or if you do not use appropriate units. - The Periodic Table is printed on page 15. | For Examiner's Use | | | | | |--------------------|--|--|--|--| | 1 | | | | | | 2 | | | | | | 3 | | | | | | 4 | | | | | | 5 | | | | | | 6 | | | | | | 7 | | | | | | 8 | | | | | | Total | | | | | | | | | | | | Marker | | |---------|--| | Checker | | This document consists of 15 printed pages and 1 blank page. Republic of Namibia MINISTRY OF EDUCATION, ARTS AND CULTURE **1** Period 2 of the periodic table is shown in Table 1.1 below. # Table 1.1. | | | | | ias | | | | | | |--|-------|---------------------------------------|------------|-------------|--------------|---|-------------|-----------------------|-------| | litl | nium | beryllium | boron | carbon | nitrogen | oxygen | fluorine | neon | | | 1) | Cho | ose from the | e element | s given in | Table 1.1 | to answer | the followi | ng ques | tions | | Each element may be used once, more than once or not at all. | | | | | | | | | | | | Stat | te which elen | nent | | | | | | | | | (i) | (i) forms an ion with a charge of 2+, | | | | | | | | | | /::\ | | | | | | | | | | | (11) | forms a solu | - | | | | | | | | | (iii) | forms a colo | | | emperatur | | | | | | | (, | | | | | | | | | | | (iv) | forms an ox | ide which | is also a | product of | fermentati | ion, | | | | | | | | | | | | | | | | (v) | consists of c | diatomic r | nolecules | with the re | lative forn | nula mass, | M _r , of 3 | 2. | | | | | | | | | | | | | b) | A ni | trogen atom | forms an | ion, whic | h has a for | mula ¹⁴ ₇ N ³⁻ | | | | | | Cor | nplete Table | 1.2 abou | t the nitro | gen ion. | | | | | | | | | | | ole 1.2 | | | | | | | | subatomic | _ | | mber of su | ıbatomic | particles | | | | | | p (protons) | | 7 | | | | | | | | | e⁻ (electrons | s) | i) | | | | _ | | | | | n (neutrons) |) | ii) | | | | | | | c) | Des | cribe the for | mation of | ilithium ar | nd oxide io | ns when li | thium reac | te with o | YVO | | Ο, | 200 | | | nunam ai | ia oxiao ioi | | amarii rede | io with o | A) 9 | (d) | Explain why molten lithium oxide conducts electricity. | | Examiner's
Use | |-----|--|------|-------------------| | | | | | | | | | | | | | | | | | | [2] | | | (e) | Write the chemical formula for beryllium chloride | | | | | | [1] | | | | | [12] | | [Turn over When aqueous copper(II) sulfate is electrolysed, reactions occur at the inert carbon electrodes, cathode and anode. The apparatus is shown in Fig. 2.1. Fig 2.1 | (a) | Describe what is meant by the term <i>electrolyte</i> . | | | | | | |-------------|--|-----|--|--|--|--| | | | [1] | | | | | | (b) | Give one ion in the electrolyte which is attracted to the anode. | [4] | | | | | | (c) | Write a balanced half-equation for the reaction that occurs at the anode. | [1] | | | | | | (d) | State the product formed at the cathode and explain why it was formed. | [2] | | | | | | /- \ | | [2] | | | | | | (e) | Sodium cannot be produced by electrolysis of aqueous sodium chloride using inert electrodes. Suggest how sodium can be produced from sodium chloride by electrolysis. | | | | | | | (f) | Name one use of copper. | [1] | | | | | | | | [1] | | | | | | | | [8] | | | | | 3 | | Name co | ompound X . | |---|----------|---| |) | Give the | name of the type of a chemical reaction that is used to prepare salts. | |) | A flowch | art shows the steps involved in the preparation of a pure, dry sample ulfate from the mixture. | | | Complet | e the flowchart by filling in step 2 and 3. | | | Step 1 | mix zinc sulfate and compound X | | | Step 2 | (i) | | | Step 3 | (ii) | | | Step 4 | dry the insoluble salt (lead sulfate) | | | | | |) | (i) Con | sation is the method of preparing soluble salts. Inplete the word equation for the neutralisation reaction used to pare sodium chloride. | | | sod | um carbonate + → sodium chloride + | | | | on dioxide + | | | ` ' | cribe the chemical test for carbon dioxide. | | | | u. | | | resu | lt: | | | | | | (a) | In terms of dissociation of ions, explain the meaning of strong acid. | | |-----|--|--| | | | | | (b) | Name the process of manufacturing sulfuric acid. | | | (c) | Balance the chemical equation for the reaction. | | | | $Mg(OH)_2 + H_2SO_4 \rightarrow MgSO_4 + H_2O$ | | | (d) | Calculate (i) the number of moles in 600 cm³ of 1.5 mol/dm³ of dilute sulfuric acid, | | | | | | | | | | | | moles = (ii) the relative formula mass of magnesium sulfate, | | | | | | | | M_{r} | | | | (iii) the mass of magnesium sulfate produced in the reaction, | | | | | | | | mass = | | | | (iv) the number of water molecules produced in the reaction. | | | | | | | | 7 | | |-----|--|------| | (e) | Ascorbic acid, known as Vitamin C, is a weak acid. Analysis of 100 g of ascorbic acid shows that it contains 40.92 g carbon, 4.58 g hydrogen and 54.50 g oxygen. | | | | (i) Calculate the empirical formula of ascorbic acid. | | | | | | | | Empirical formula (ii) The relative formula mass of ascorbic acid is 176. Calculate the molecular formula of ascorbic acid. | [3] | | | Molecular formula | [2] | | | | [15] | [2] [1] | 5 | Zinc reacts with dilute nitric acid. | | |---|--|-----| | | $Zn + 2HNO_3 \rightarrow Zn(NO_3)_2 + H_3$ | Use | | (a) | State the observation made during the reaction. | | |-----|---|-----| | | | [1] | - (b) The experiment was used to investigate the rate of reaction of zinc when reacted with dilute nitric acid. All other conditions remained the same. The size of the pieces of zinc were: - A zinc powder - **B** granules - C lumps Complete Table 5.1 by filling in the sizes of the pieces corresponding to the rate of reaction. Table 5.1 | Size of
the piece
of zinc | (i) | (ii) | (iii) | |---------------------------------|-----|------|-------| | Rate of reaction cm³/min | 10 | 24 | 3 | (c) The experiment was repeated with dilute nitric acid at higher temperature. In terms of collision theory, describe the effects of higher temperature on the rate of reaction. [2] (d) In terms of change in ionic charge, explain why nitric acid is reduced. (e) Fig. 5.1 shows the energy level diagram for the reaction. Fig. 5.1 | . [2 | |------------------| | | | | | . [1 | | | | . [1 | | [10 [°] | | | 6 In an experiment, different mixtures of metals and metal oxides were heated. Table 6.1 shows the results. Table 6.1 | mixture | reacts/no reaction | products if any | | | |-------------------------|--------------------|---------------------------|--|--| | copper(II) oxide + iron | reacts | iron oxide(II) and copper | | | | iron(III) oxide + zinc | reacts | + | | | | calcium oxide + copper | no reaction | no products | | | | (a) | Identify the two products formed when iron(III) oxide reacts with zinc. | | |-----|--|-----| | (b) | Arrange the metals calcium, copper, iron and zinc in the order of reactivity. | [2] | | | most reactive | | | | least reactive | | | (c) | Explain why there is a reaction between copper(II) oxide and iron. | [2] | | | | | | (d) | Aluminum is high in the reactivity series but does not react with water or acids. Give the explanation that accounts for this apparent unreactivity of aluminium. | [2] | | | | | | | | [2] | | | | | | For | |------------| | Examiner's | | Use | | (e) | | presence of calcium sulfate and magnesium sulfate in water causes hardness of water. | Examir
Use | |-----|------|--|---------------| | | (i) | State the type of hardness caused by the presence of these two compounds. | | | | | [1] | | | | (ii) | Describe one way of removing the type of hardness in (i). | | | | | | | | | | [1] | | | | | [10] | | - **7** Esters, fats and polyesters all contains the ester-linkage. Fat is a natural macromolecule found as the main constituent of food. - (a) Give the other two main constituents of food. [2] **(b)** Ethyl ethanoate is an ester formed by the reaction of ethanoic acid and alcohol **Z**. (i) Name alcohol Z.[1] (ii) Draw the molecular structure of ethanoic acid. (iii) The structural formula of ethyl ethanoate is shown in Fig. 7.1. Circle the ester linkage in the structure. Fig. 7.1 [1] [2] (iv) Give one use of esters.[1] | (c) | A p | olyester is represented by the structure shown in Fig. 7.2. | | |-----|------|---|-----| | | | | | | | | Fig. 7.2 | | | | (i) | State the type of polymerisation that produced the polyester shown in Fig. 7.2. | | | | | | [1] | | | (ii) | Name the two monomers used to produce the polyester shown in Fig. 7.2 |) | | | | 1 | | | | | 2 | [2] | [Turn over For Examiner's Use [10] For Examiner's Use **8** Fig. 8.1 shows some of the stages of the purification of water from the sewage. | | | aaaca | | |-----|--|-----------|-----| | | Fig. 8.1 | | | | (a) | State the percentage composition of nitrogen in the dry air. | | | | | | | | | | | | [1] | | (b) | After sedimentation, the air is mixed with water in the aeration tank. Outline how water is purified in the aeration tank. | [2] | | (c) | Give the method used to remove larger insoluble particles in tank A . | | | | | | | [1] | | (d) | State the role of chlorine gas in the purification of water from the sew | age. | | | | | | | | | | | [1] | | (e) | All the sludge is collected into tanks called digesters, then digested be mixing it with bacteria that destroy the harmful substances and at the same time produces methane gas. | - | | | | State the negative effect of excess emission of methane gas to the e | nvironmer | nt. | [2] | | | | | [7] | | | | | | | | | 1 | 1 | | | 1 | | | ı | T | | |------------|---------------------------|----|---------------------------|----------------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|--------------------------------------|---|---| | | | 0 | Helium | 20
Ne
Neon | 40
Ar
Argon | 84
Krypton
36 | 131
Xe
Xenon
54 | Radon
86 | | 175
Lu
Lutetium
71 | Lr
Lawrencium
103 | | | | ₩. | | 19 F
Fluorine | 35,5
C1
Chlorine | 80
Br
Bromine
35 | 127 I Iodine 53 | At
Astatine
85 | | 173
Yb
Ytterbium
70 | No
Nobelium
102 | | | | 5 | | 16
O
Oxygen
8 | 32
S
Sulfur
16 | 79
Se
Selenium
34 | 128
Te
Tellurium
52 | Po
Polonium
84 | | 169
Tm
Thulium
69 | Md
Mendelevium
101 | | | | > | | 14
N
Nitrogen
7 | 31
P
Phosphorus
15 | 75
As
Arsenic
33 | 122
Sb
Antimony
51 | 209
Bi
Bismuth
83 | | 167
Er
Erbium
68 | Fm
Fermium
100 | | | | 2 | | 12
C
Carbon
6 | 28
Si
Silicon | 73
Ge
Germanium
32 | 119
Sn
Tin | 207
Pb
Lead
82 | | 165
Ho
Holmium
67 | Es
Einsteinium
99 | | | | = | | 11
B
Boron
5 | 27
A1
Aluminium
13 | 70
Ga
Gallium
31 | 115
In
Indium
49 | 204 T / Thallium | | 162
Dy
Dysprosium
66 | Californium
98 | | | | | | | | 65
Zn
Zinc
30 | 112
Cd
Cadmium
48 | 201
Hg
Mercury
80 | | 159
Tb
Terbium
65 | Bk
Berkelium
97 | | 9 | SILLE | | | | | 64
Cu
Copper
29 | 108
Ag
Silver
47 | 197
Au
Gold
79 | | 157
Gd
Gadolinium
64 | Curium
96 | | DATA SHEET | able of the Elen
Group | | | | | 59
Ni
Nickel
28 | 106
Pd
Palladium
46 | 195
Pt
Platinum
78 | | 152
Eu
Europium
63 | Am
Americium
95 | | DATA | e renouic iau | | | | | 59
Co
Cobalt | 103
Rh
Rhodium
45 | 192
Ir
Iridium
77 | | 150
Sm
Samarium
62 | Pu
Plutonium
94 | | The | | | 1
H
Hydrogen | | | 56
Fe
Iron
26 | 101
Ru
Ruthenium
44 | 190
0s
Osmium
76 | | Pm
Promethium
61 | Np
Neptunium
93 | | | | | | | | 55
Mn
Manganese
25 | Tc
Technetium
43 | 186
Re
Rhenium
75 | | 144
Nd
Neodymium
60 | 238
U
Uranium
92 | | | | | | | | 52
Cr
Chromium
24 | 96
Mo
Molybdenum
42 | 184
W
Tungsten
74 | | 141
Pr
Praseodymium
59 | Pa
Protactinium
91 | | | | | | | | 51
V
Vanadium
23 | 93
Nb
Niobium
41 | 181
Ta
Tantalum
73 | | 140
Ce
Cerium
58 | I I | | | | | | | | 48
Ti
Titanium
22 | 91
Zr
Zirconium
40 | 178
Hf
Hafnium
72 | | 1 | nass
umber | | | | | | | | Scandium 21 | 89
Y
Yttrium
39 | 139 La
Lanthanum
57 * | 227
Ac
Actinium
89 † | s s | a = relative atomic mass X = atomic symbol b = proton (atomic) numbe | | | | = | | 9
Be
Beryllium
4 | 24
Mg
Magnesium
12 | 40
Ca
Calcium
20 | 88
Sr
Strontium
38 | 137
Ba
Barium
56 | 226
Ra
Radium
88 | *58 - 71 Lanthanoid series
†90 - 103 Actinoid series | a ★ | | | | _ | | 7
Li
Lithium
3 | 23 Na Sodium | 39
K
Potassium
19 | 85
Rb
Rubidium
37 | 133
Cs
Caesium
55 | Fr
Francium
87 | *58 - 71 La
†90 - 103 A | Key | The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.). ### **BLANK PAGE** The DNEA acknowledges the usage and reproduction of third party copyright material in the NSSC Assessment, with and without permission from the copyright holder. The Namibian Government Copyright Act allows copyright material to be used limitedly and fairly for educational and non-commercial purposes. The Directorate of National Assessment and Examinations operates under the auspices of the Ministry of Education, Arts and Culture in Namibia.